igibson.tasks package¶
Submodules¶
igibson.tasks.reaching_random_task module¶
-
class
igibson.tasks.reaching_random_task.
ReachingRandomTask
(env)¶ Bases:
igibson.tasks.point_nav_random_task.PointNavRandomTask
Reaching Random Task The goal is to reach a random goal position with the robot’s end effector
-
get_l2_potential
(env)¶ L2 distance to the goal
- Parameters
env – environment instance
- Returns
potential based on L2 distance to goal
-
get_potential
(env)¶ Compute task-specific potential: distance to the goal
- Parameters
env – environment instance
- Returns
task potential
-
get_task_obs
(env)¶ Get task-specific observation, including goal position, end effector position, etc.
- Parameters
env – environment instance
- Returns
task-specific observation
-
sample_initial_pose_and_target_pos
(env)¶ Sample robot initial pose and target position
- Parameters
env – environment instance
- Returns
initial pose and target position
-
igibson.tasks.room_rearrangement_task module¶
-
class
igibson.tasks.room_rearrangement_task.
RoomRearrangementTask
(env)¶ Bases:
igibson.tasks.task_base.BaseTask
Room Rearrangement Task The goal is to close as many furniture (e.g. cabinets and fridges) as possible
-
get_potential
(env)¶ Compute task-specific potential: furniture joint positions
- Parameters
env – environment instance
- Param
task potential
-
get_task_obs
(env)¶ No task-specific observation
-
reset_agent
(env)¶ Reset robot initial pose. Sample initial pose, check validity, and land it.
- Parameters
env – environment instance
-
reset_scene
(env)¶ Reset all scene objects and then open certain object categories of interest.
- Parameters
env – environment instance
-
sample_initial_pose
(env)¶ Sample robot initial pose
- Parameters
env – environment instance
- Returns
initial pose
-
igibson.tasks.task_base module¶
-
class
igibson.tasks.task_base.
BaseTask
(env)¶ Bases:
object
Base Task class. Task-specific reset_scene, reset_agent, get_task_obs, step methods are implemented in subclasses Subclasses are expected to populate self.reward_functions and self.termination_conditions
-
get_reward
(env, collision_links=[], action=None, info={})¶ Aggreate reward functions
- Parameters
env – environment instance
collision_links – collision links after executing action
action – the executed action
info – additional info
- Return reward
total reward of the current timestep
- Return info
additional info
-
abstract
get_task_obs
(env)¶ Get task-specific observation
- Parameters
env – environment instance
- Returns
task-specific observation (numpy array)
-
get_termination
(env, collision_links=[], action=None, info={})¶ Aggreate termination conditions
- Parameters
env – environment instance
collision_links – collision links after executing action
action – the executed action
info – additional info
- Return done
whether the episode has terminated
- Return info
additional info
-
abstract
reset_agent
(env)¶ Task-specific agent reset
- Parameters
env – environment instance
-
abstract
reset_scene
(env)¶ Task-specific scene reset
- Parameters
env – environment instance
-
step
(env)¶ Perform task-specific step for every timestep
- Parameters
env – environment instance
-