Stanford University

Technical Report

Gibson Env V2: Embodied Simulation Environments for
Interactive Navigation

Fei Xia' ChengshuLi!' Kevin Chen! William B. Shen! Roberto Martin-Martin

Noriaki Hirose!

Amir R. Zamir'? Li Fei-Fei'

Silvio Savarese!

! Stanford University 2 University of California, Berkeley

http://svl.stanford.edu/gibson?2

June 16 2019

1 Introduction

Autonomous navigation is one of the most crucial tasks
for mobile agents. The goal is to have the mobile agent
reach any location in the environment in a safe and ro-
bust manner. Traditionally, robot navigation (including
obstacle avoidance) has been addressed with analytical
model-based solutions using signals from Lidars or depth
sensors [5, 6]. Recently, learning based visual navigation
methods have gained popularity because 1) they can per-
form navigation without accurate localization or metric
maps [18, 1], 2) they do not require expensive Lidars or
depth sensors [1 1, 14], 3) they can generalize robustly in
previously unseen environments [24, 15].

Despite these benefits, learning-based approaches usu-
ally require a large amount of data. Collecting the data
through interactions with the real world could be danger-
ous, costly and time-consuming. A solution to this chal-
lenge of learning-based navigation is to learn in simulated
environments. In simulation, the agent can collect experi-
ences safely and efficiently: usually one or two orders of
magnitude faster than real-time. However, despite recent
advances in simulation for robotics [19, 24, 20, 21, 12,

, 7, 3], it is still less than straightforward to transfer di-
rectly what is learned in simulation to the real world. The
reason for this is the so-called sim2real gap: the (more
or less subtle) differences between the simulated and real
environments, for example due to the different spatial ar-
rangement of objects or the disparity between real and
simulated sensor signals.

Many learning-based approaches rely on simulation
for fast policy learning. And different simulation-to-real
transfer strategies including photorealistic rendering|[16,

], domain randomization[7] and domain adaptation[2,

] were proposed. In particular, the Gibson Env[23] is a
simulation environment that does photorealistic rendering
and additionally provides a pixel-level domain adaptation
mechanism to aid with the commonly raised concern of
sim-to-real transfer. In Gibson Env the spatial arrange-
ment of objects is realistic because the models of the en-
vironments are obtained from the real world. Addition-
ally, the gap between simulated and real visual sensors
is bridged through a novel neural network, the Goggles.
Thanks to these properties, Gibson Env has demonstrated
great sim-to-real transfer performance [9, 13]. However,
Gibson Env presents two main limitations that hinder its
use for learning-based navigation approaches: 1) the ren-
dering is relatively slow (40-100fps) for large-scale train-
ing, which partially defeats the purpose of training in sim-
ulation, and 2) the interaction between the agent and the
environment is limited only to a planar motion on the
floor, while navigation in many real-world scenarios in-
volves more intricate forms of interaction, such as open-
ing doors and pushing away objects that are in the way.

To overcome these limitations, we present Gibson Env
V2, a significantly improved version over Gibson Env.
Gibson Env V2 has significantly faster rendering speed,
which makes large-scale training possible. It also allows
for more complicated interactions between the agent and

http://svl.stanford.edu/gibson2

Stanford University

Technical Report

the environment, such as picking up and placing objects,
or opening doors and cabinets. This environment opens
up new venues for jointly training base and arm policies,
allowing researchers to explore the synergy between ma-
nipulation and navigation.

This paper provides a brief overview of our updated
Gibson Environment. In Section 2, we showcase the new
rendering pipeline and dynamic objects handling. In Sec-
tion 3, we benchmark Gibson Env V2 against Gibson Env
V1 and other simulated environments.

2 Gibson Env V2

The main bottleneck for rendering speed in Gibson Env
V1 is caused by its reliance on image-based rendering
(IBR). IBR has the benefit of achieving high photoreal-
ism, but it has two main issues. First, in order to render
the scene, the system must load images from all available
viewpoints and process them on-the-fly. This process is
computationally expensive and although modern IBR al-
gorithms can achieve-real time frame rate, on most sys-
tems they struggle to render orders of magnitudes faster
than real-time[8], which makes learning in a IBR-based
environment slow. Secondly, using IBR limits our abil-
ity to add interactive objects in the environment because
rendering is based on static images.

To address these issues, in Gibson Env V2, we switched
to mesh rendering and used a neural network to fix the
artifacts and achieve similar photorealism level and faster
speed (see Table 1 for rendering speed comparisons). We
also enabled addition of interactive objects.

Mesh texturing and rendering Gibson Env V2 re-
quires textured meshes, which were not required for Gib-
son Env V1. We textured the mesh with globally reg-
istered RGB images, using OpenMVS’s implementation
of MVS-texturing[22]. Because the meshes are already
available from fusing depth sensors, we only need to run
the texturing step of the traditional MVS-texturing. In
Gibson Env V2, we also used view selection, global seam
leveling and local seam leveling to achieve high-quality
mesh texture. We released all the mesh models as part of
the updated software stack.

To keep our rendering pipeline compatible with mod-
ern deep learning frameworks, we implemented the en-
tire pipeline in Python with PyOpenGL, PyOpenGL-

to t1 to t3 tq

Figure 1: A example trajectory of an agent opening a door with
a gripper. Top row: Agent’s view. Bottom row: Physics view.

accelerate, and pybindl1 with our custom C++ code.
Compared with Gibson Env V1, which did not fully use
OpenGL and relied heavily on expensive inter-process
communication, we now are able to achieve much lower
overhead, resulting in faster rendering speed.

It is worth mentioning that we allow rendered images
to directly transfer to a tensor on a GPU in modern deep
learning frameworks (such as PyTorch) instead of going
through host memory. This effectively reduces device-
host memory copies and significantly improves rendering
speed (7.9 times frame rate gain at 512 x 512 resolution
and 28.7 times frame rate gain at 1024 x 1024 resolution).

Interactive Navigation Another main drawback of IBR
is that adding objects to existing environments is diffi-
cult. Each rendered frame takes pixels from source views,
so adding objects would mean manipulating the source
images themselves. On the other hand, mesh rendering
makes it easy to add novel objects to the scene such as bot-
tles and cans that the agent can interact with. We can also
add articulated objects such as doors and cabinets into the
environment to allow for more complicated tasks, e.g. in-
teractive navigation or object search.

To simulate physics for the added objects, we used sim-
plified mesh models in Pybullet for collision detection and
handling. We synchronized the pose between Pybullet
and our own renderer to bypass Pybullet’s native render-
ing. Using our own rendering pipeline gives us improved
performance and the freedom to randomize lighting and
textures for meshes in the scene. Fig 1 shows a trajectory
of an agent interacting with a door. The agent approaches
the door, grasps the handle with an end effector and pulls
the door open by backing up. To simplify the physics, we

Stanford University

Technical Report

create a universal joint between the end effector and the
door handle when they are closer than a certain threshold.

3 Benchmarks

In this section, we benchmarked the rendering speed of
Gibson Env V2 against that of Gibson Env V1 and the
state-of-the-art 3D simulator Habitat-sim[20]. We also
demonstrated the sim-to-real performance on a visual path
following task. Note that this section is not an exhaustive
benchmark of all aspects of Gibson Env V2, but rather a
showcase of some important aspects.

Rendering speed The rendering speed of the improved
renderer can be found in Table 1. Due to the reduction
of inter-process communication, the rendering speed is
much faster than Gibson Env V1, achieving 4x frame
rate for RGB and close to 2x frame rate for simultane-
ous RGB filled, semantic labels and surface normal ren-
dering. For RGB filled rendering, the main bottleneck is
running the neural network filler, so the speedup is not
as significant. We also compared the rendering speed
with Habitat-sim[20]. Since Habitat-sim uses a simpli-
fied physics model, we compared it with our rendering-
only (no physics) speed for a fair comparison. Our ren-
dering speed is on par with the state-of-the-art simulation
engines.

Sim-to-real transfer As a demonstration of the sim-to-
real transfer performance of our simulator, we conducted
a experiment on a transfer task of visual path following.
Fig 2 shows the problem setup: A visual path is defined
as a sequence of images collected on a trajectory by the
agent, denoted as (Ij , I?). We use a policy network that
takes in the image sequence and the current camera view
(I Jf I Jl»’), and generates velocity commands (vg,wp) for
the agent. The images are in pairs because we use a 360
degree field of view camera consisting of two 180 degree
field of view images. See [9] for the model and experi-
mental setup details. For the sim-to-real experiment, the
visual path is collected in the simulator, and the visual
path following task is executed in the real world. There
are lighting and object arrangement differences between
the simulated environment and the real world. We com-
pared our sim-to-real experiment with a real-to-real ex-
periment in which the visual path is collected in the real

Output GibsonV2 GibsonV1
Sensor (fps) 1017.4 396.1
RGBD Pre-filled (fps) 264.2 58.5
RGBD Filled (fps) 61.7 30.6
Semantic Only (fps) 279.1 144.2
Surface Normal (fps) 271.1 129.7
Scene ‘ GibsonV2 Habitat-sim
Hillsdale 620.4 752.9
Albertville 422.0 688.2

Table 1: Rendering speed benchmark. Top table: The table
shows rendering speed (frame per second) of our environment
under different rendering modes at 256 x 256 resolution with full
physical simulation enabled. Bottom table: The table shows the
rendering only (no physics) speed of our environment compared
with habitat-sim at 640x480 resolution. All benchmarks are run
with a single NVIDIA GeForce GTX 1080 Ti Graphics Card

(I, 1})

> Visual Localization
A\ = 1 " Module
360-degree camera .
j /.1
(vo, wo) : ;o1
"=~ Control Policy ﬂ

"l d

Visual Trajectory

Figure 2: Illustration of sim-to-real transfer experiment on vi-
sual path following.

world. We evaluated sim-to-real and real-to-real perfor-
mance in 3 cases, and for each case we repeat the exper-
iment 10 times and calculate success rate and sub-goal
coverage rate.

As shown in Table 2, the sim-to-real transfer per-
formance is comparable to the real-to-real performance.
Note that the sim-to-real transfer performance is deter-
mined by the simulator, the task and the algorithm. There
is no guarantee that Gibson Env V2 simulator will work
for all algorithms. Rather, this simply shows that, with
appropriate algorithmic design, Gibson Env V2 has the
potential of transferring to real for navigation tasks.

Stanford University

Technical Report

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

Case 1: 6.6 m | Case2: 8.4m | Case3: 12.7m
Sim2real 0.90 / 0.98 0.80 / 0.87 0.80 / 0.93
Real2real 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

V. Koltun. Carla: An open urban driving simulator. In
Conference on Robot Learning, pages 1-16, 2017. 1

[5] F. Flacco, T. Kroger, A. De Luca, and O. Khatib. A depth

Table 2: Sim-to-real transfer performance for visual path
following task. The table shows success rate (the first
number) and sub-goal coverage rate (the second number).

4 Conclusion

In this paper we give a brief overview of an improved ver-
sion of Gibson Env. It achieved higher rendering speed
and is capable of simulating interactive objects in the en-
vironment while maintaining the photo-realism of Gibson
Env. This environment could accelerate visual navigation
policy learning in a realistic indoor environment. More
importantly, it opens up possibilities for jointly learning
manipulation and navigation policies.

Acknowledgement

We gratefully acknowledge the support of Toyota, Sam-
sung, Nvidia, Stanford Graduate Fellowship and the
National Science Foundation. This material is based
upon work supported by the National Science Foun-
dation Graduate Research Fellowship under Grant No.
DGE1147470. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of
the authors(s) and do not necessarily reflect the views of
the National Science Foundation.

References

[1] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tom-
lin. Combining optimal control and learning for vi-
sual navigation in novel environments. arXiv preprint
arXiv:1903.02531,2019. 1

K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey,
M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor, K. Kono-
lige, et al. Using simulation and domain adaptation to
improve efficiency of deep robotic grasping. In 2018
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 4243-4250. IEEE, 2018. 1

S. Brodeur, E. Perez, A. Anand, F. Golemo, L. Celotti,
F. Strub, J. Rouat, H. Larochelle, and A. Courville. Home:
A household multimodal environment. arXiv preprint
arXiv:1711.11017,2017. 1

(2]

(3]

space approach to human-robot collision avoidance. In
2012 IEEE International Conference on Robotics and Au-
tomation, pages 338-345. IEEE, 2012. 1

D. Fox, W. Burgard, and S. Thrun. The dynamic win-
dow approach to collision avoidance. [EEE Robotics &
Automation Magazine, 4(1):23-33, 1997. 1

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and
J. Malik. Cognitive mapping and planning for visual nav-
igation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 26162625,
2017. 1

P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow.
Scalable inside-out image-based rendering. ACM Trans-
actions on Graphics (TOG), 35(6):231, 2016. 2

N. Hirose, F. Xia, R. Martin-Martin, A. Sadeghian, and
S. Savarese. Deep visual mpc-policy learning for naviga-
tion. arXiv preprint arXiv:1903.02749, 2019. 1, 3

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsou-
nis, V. Koltun, and M. Hutter. Learning agile and dy-
namic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019. 1

L. Ke, X. Li, Y. Bisk, A. Holtzman, Z. Gan, J. Liu, J. Gao,
Y. Choi, and S. Srinivasa. Tactical rewind: Self-correction
via backtracking in vision-and-language navigation. arXiv
preprint arXiv:1903.02547, 2019. 1

N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In 2004
1IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), 2004. 1
X. Meng, N. Ratliff, Y. Xiang, and D. Fox. Neural
autonomous navigation with riemannian motion policy.
In International Conference on Robotics and Automation
(ICRA), 2019. 1

P. Mirowski, M. K. Grimes, M. Malinowski, K. M.
Hermann, K. Anderson, D. Teplyashin, K. Simonyan,
K. Kavukcuoglu, A. Zisserman, and R. Hadsell. Learn-
ing to navigate in cities without a map. arXiv preprint
arXiv:1804.00168, 2018. 1

D. Mishkin, A. Dosovitskiy, and V. Koltun. Benchmark-
ing classic and learned navigation in complex 3d environ-
ments. arXiv preprint arXiv:1901.10915, 2019. 1

S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing
for data: Ground truth from computer games. In European
Conference on Computer Vision, pages 102—118. Springer,
2016. 1

F. Sadeghi and S. Levine. rl: Real singleimage flight with-
out a single real image. arxiv preprint. arXiv preprint
arXiv:1611.04201, 12, 2016. 1

(6]

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Stanford University

Technical Report

(18]

(19]

[20]

(21]

(22]

(23]

[24]

H. Salman, P. Singhal, T. Shankar, P. Yin, A. Salman,
W. Paivine, G. Sartoretti, M. Travers, and H. Choset.
Learning to sequence robot behaviors for visual naviga-
tion. arXiv preprint arXiv:1803.01446, 2018. 1

M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser,
and V. Koltun. Minos: Multimodal indoor simulator
for navigation in complex environments. arXiv preprint
arXiv:1712.03931,2017. 1

M. Savva, A. Kadian, O. Maksymets, et al. Habitat: A
platform for embodied ai research. arXiv preprint arXiv,
2019. 1,3

S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 1

M. Waechter, N. Moehrle, and M. Goesele. Let there be
color! — Large-scale texturing of 3D reconstructions. In
Proceedings of the European Conference on Computer Vi-
sion. Springer, 2014. 2

F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and
S. Savarese. Gibson env: Real-world perception for em-
bodied agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9068—
9079, 2018. 1

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta,
L. Fei-Fei, and A. Farhadi. Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning.
In Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on, pages 3357-3364. IEEE, 2017. 1

