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Abstract— Some robots must repeatedly interact with a fixed
set of objects in their environment. To operate correctly, it is
helpful for the robot to be able to recognize the object instances
that it repeatedly encounters. However, current methods for
recognizing object instances require that, during training, many
pictures are taken of each object from a large number of
viewing angles. This procedure is slow and requires much
manual effort before the robot can begin to operate in a new
environment. We have developed a novel procedure for training
a neural network to recognize a set of objects from just a single
training image per object, allowing a user to easily train a
robot to operate in a new environment. To obtain robustness
to changes in viewpoint, we take advantage of a supplementary
dataset in which we observe a separate (non-overlapping) set
of objects from multiple viewpoints. After pre-training the
network in a novel multi-stage fashion, the network can robustly
recognize new object instances given just a single training image
of each object. If more images of each object are available,
the performance improves. We perform a thorough analysis
comparing our novel training procedure to traditional neural
network pre-training techniques, as well as previous state-
of-the-art approaches including keypoint-matching, template-
matching, and sparse coding, and we demonstrate that our
method significantly outperforms these previous approaches.
Our method can thus be used to easily teach a robot to recognize
a new set of object instances in order to operate in a fixed
environment.

I. INTRODUCTION

There are many robotics applications in which a robot
must interact with a fixed set of objects. For example, a
robot in a factory would need to recognize the objects on the
conveyer belt. A lab assistant robot would need to recognize
the lab equipment, such as beakers and test tubes. A cooking
robot would need to recognize the cooking equipment. In
these and other robotic settings, a user can tell the robot in
advance which objects it needs to recognize.

Such applications have motivated the robotics community
to work on the problem of object instance recognition [1],
[2], [3], [4], [5], [6]. For this task, a user pre-defines a
set of objects that the robot must recognize and trains a
perception system to recognize these objects in the environ-
ment. Previous attempts to solve this problem require that
the user rotate the object on a turn-table while recording a
3D scan. These 3D scans can then be combined to create a
3D object model [1], [2], [3] or used to train a classifier [4],
[5]. However, this process requires special equipment to turn
the object in a controlled fashion, and the process requires a
fair amount of time from the user. We would like to enable
users to quickly train robotic perception systems to recognize
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Fig. 1. Given only a single image of an object, we want to recognize
this object from novel viewpoints. Traditional neural networks pre-train on
ImageNet alone. We perform a multi-stage training procedure, in which we
first pre-train on a large class-level dataset (left), followed by pre-training
on an auxiliary multi-view dataset (middle), which trains our network to be
robust to viewpoint changes. Finally, we train on the objects we wish to
recognize from just a single image (right).

objects from just a small number of training images, or even
from a single image.

Further, for some real-world applications, only a small
number of images of the target objects may be available. For
example, a user may wish to train a robot to recognize objects
from a product databases available on Amazon, Safeway, or
another website. Unfortunately, for many of these product
databases, only a small number of images are available for
each product. If a perception system could robustly recognize
objects given just a small number of training images, a large
number of robotics applications would be available that make
use of such product databases.

We introduce a new approach to training neural networks
to recognize objects from just a single training image, using
a general-to-specific training procedure. We start by pre-
training our network in the traditional fashion, using a large
class-level dataset. Our insight is that, while this procedure
teaches the network to be robust to intra-class variation,
the network has not yet learned to be robust changes in
viewpoint. Thus, we continue pre-training our network using
a smaller multi-view dataset in which we observe a set
of objects from multiple viewpoints. Finally, we train our
network on a separate dataset in which only a single image is
available for each object instance. This procedure is depicted
in Figure 1.

By training our network in this general-to-specific manner,
our network learns the invariances that it needs to perform
the final task. Our network initially learns general visual
properties about the world. It then learns object invariances,
enabling the network to be robust to rotations and changes in
viewpoint. Finally, our network learns to recognize a specific
set of objects from just a single training image per object.

Using this novel multi-stage training procedure, our net-
work learns to robustly recognize objects from new view-



points. To our knowledge, this is the first work that uses deep
learning to recognize specific object instances from a single
image. We perform an extensive evaluation and show that
multi-view pre-training outperforms previous state-of-the-art
approaches for recognizing both textured and untextured
objects from novel viewpoints. If more than one training
image is available, our performance will improve, and we
continue to outperform all baseline approaches for any given
number of training images.

II. RELATED WORK

Instance recognition has traditionally been achieved by
matching either 2D or 3D keypoints across images [7],
[8], [9], [10]. Keypoints can be filtered using different
criteria [7] and validated using RANSAC or Hough Voting
to ensure geometric consistency [11]. Although keypoint-
based approaches have shown some success for instance
recognition, 2D keypoints are unreliable for recognizing
untextured objects or non-planar objects when the viewpoint
is changed by more than 25 degrees [12]. 3D keypoints
are often not sufficiently discriminative to recognize a wide
range of objects.

Template matching has also been used for instance recog-
nition [13]. Much work has recently been done to make
template matching scalable, efficient, and robust to occlu-
sions [14], [15]. However, viewpoint invariance is usually
achieved by recording many templates during training from
different viewing angles. If only a small number of images
are available from each object during training, template
matching methods will not robustly detect the target object,
as we will demonstrate.

Others have approached this problem by building a 3D
model of each object and then fitting the 3D model to the
scene [2], [3]. However, the process required to create these
models is slow and often requires a specialized setup to
carefully scan the object from different views. Our approach
outperforms these methods without requiring any special
equipment, and we demonstrate robustness when training
from just a single image or a small number of images, thus
significantly easing the burden on the user.

Another approach that can be used for recognizing objects
is to use machine learning methods to train an object
classifier [5]. One example of such a classifier that has
shown great success in recent years is a convolutional neural
network [16], [17], [18]. However, statistical methods such
as neural networks typically require many training examples
to perform well. For example, for the ImageNet challenge,
participants train their methods on 1.2 million training ex-
amples [19]. We will show that our approach can be used to
recognize object instances from new viewpoints given only 1
training example per object, and we significantly outperform
previous approaches.

One-shot learning has also been explored for classifying
objects at the category-level [20], [21], [22] or for recog-
nizing handwritten characters [23]. In contrast, we focus on
recognizing object instances from new viewpoints, and we

compare our approach to state of the art techniques for object
instance recognition.

Our method makes use of a separate multi-view dataset
to improve performance on the task of instance recognition
from a single training image. Our idea of using a supplemen-
tal multi-view dataset is related to previous efforts to improve
recognition performance by using a video sequence [24],
[25]. Another related effort is to use unlabeled video for
unsupervised feature learning [26], [27]. These methods
typically enforce the consistency of features between sub-
sequent video frames. We instead use multi-view objects
in a classification setting to improve our performance for
recognizing single-view objects, and we do not treat the
multi-view dataset as a linear video sequence.

III. METHOD

A. Problem Setup

Suppose that we are given an image xi of an object
instance that we want to recognize. We assume that we have
a “single-view” database of KS different objects, and that
the object in our image xi is one of the KS objects in our
single-view database. We also assume that each of the objects
in our database has only one image taken of it. Given that
our image xi is likely to be taken from a novel viewpoint
relative to the images in our database, how can we robustly
identify the instance label for this object?

In order to robustly perform this task, we suppose that
we also have a separate “multi-view” set of KM objects
for which we have recorded images from many viewpoints.
Because we have observed each of these separate objects
from many viewing angles, we can use these images to teach
our method to be invariant to viewpoint changes. Then, given
a novel viewpoint of an object from the single-view dataset,
we can use this learned invariance to correctly recognize the
target object.

Note that the multi-view objects are chosen so that there is
no overlap between the KM multi-view objects and the KS

single-view objects. Thus, any invariances that we learn from
the multi-view dataset must be general to be able to transfer
over to a new set of objects. Our final goal is to identify an
image xi as belonging to one of the KS single-view objects;
the multi-view dataset is helpful only in teaching our method
to be invariant to viewpoint changes.

B. Multi-View Pre-Training

We consider instance recognition as a classification prob-
lem, and we will explore the use of neural networks to
perform this task. Because neural networks represent a non-
convex decision boundary, the initialization of the network
is important. One common approach for training a neural
network with a limited amount of data is to initialize the
network by pre-training on a larger dataset [28] (e.g. Ima-
geNet [19]). These initial weights are then fine-tuned using a
smaller dataset for the relevant task. This training procedure
allows the network to find a better local optimum.

However, the ability to transfer information from the larger
dataset to the smaller dataset, via network initialization,



depends on the similarity between the datasets. If the datasets
are not very similar, then this initialization will be poor [29].
As we will show, pre-training the network for class-level
recognition (e.g. using ImageNet) is not ideal for training
these networks to be viewpoint invariant with respect to
specific object instances.

For the original ImageNet classification task, the goal of
the network is to recognize 1000 different object classes.
Each class represents an object category, such as “restaurant”
or “mask,” and the appearance of objects within the class
can vary dramatically; different restaurants can have a very
different appearance. Because the network must recognize
generic object classes, the computational effort of the net-
work is spent attempting to handle all of the different aspects
of intra-class variability. On the other hand, if our goal is to
perform object instance recognition, then we can focus our
network’s computational effort on being robust to rotations,
leading to better performance at this task.

We will show that, although pre-training our network on
ImageNet provides a decent initialization for our network, we
can obtain better performance through a multi-stage training
procedure, as follows:

1) Train our network on a large class-level dataset.
2) Train our network on an instance-level dataset with

many views per object instance.
3) Train our network to recognize a new set of object

instances from a single image per object.

This setup is illustrated in Figure 1. In more detail, we
initially pre-train our network on a large class-level dataset,
e.g. ImageNet, which allows our network to learn general
image statistics. We then train our network on a smaller
dataset in which we observe a set of objects from multiple
viewpoints, and we learn to recognize these objects instances.
This stage allows our network to learn to be robust to changes
in viewpoint. Finally, we train our network on a separate
dataset in which only a single image is available for each
object. We show that adding an intermediate multi-view pre-
training step (step 2 above) gives better performance than
pre-training only on a class-level dataset. Adding multi-view
pre-training increases the robustness of our network and
enables us to recognize novel objects from new viewpoints.

We would also like to be able to recognize objects in
real scenes against random backgrounds. To make our net-
work robust to different backgrounds, during multi-view pre-
training (step 2) we synthetically place the objects against
random background scenes which do not contain any of the
test objects. Although the single-view objects that we wish to
recognize are placed against a fixed background for training
(in step 3), we will show that pre-training with separate
multi-view objects against random backgrounds in step 2
allows our method to learn to be robust to new backgrounds.

One can view our approach as an extension of data
augmentation techniques for neural networks. It is common
when training neural networks to perform multiple image
transformations on each training example to synthetically
generate more training examples. Common transformations

include crops, horizontal flips, and synthetic relighting [18].
These data augmentation methods are an attempt to train

the network to be robust to translations or changes in
lighting. However, it is more difficult to construct an image
transformation that would simulate an out-of-plane rotation.
As an alternative, we propose multi-view pre-training, in
which our intermediate training stage involves classifying
a separate set of objects from multiple viewpoints. Multi-
view pre-training allows our network to learn new kinds
of invariances, such as out-of-plane rotations, that would be
hard to simulate using data augmentations.

C. Network Details

Our neural network uses the CaffeNet architecture [30],
which is very similar to the architecture proposed by
Krizhevsky et al [18]. The network is initially pre-trained on
ImageNet [19]. We then fine-tune this network on the multi-
view dataset as follows: we replace the final layer with a
KM class classifier, and we fine-tune the weights to classify
the KM multi-view objects. We call this step “multi-view
pre-training” since we are training the network to recognize
object instances given multiple views of each object. During
multi-view pre-training, we hold the convolutional layers
fixed and only fine-tune the fully-connected layers on top.

During multi-view pre-training, we use a learning rate
of 0.001 for all layers except the final layer, which we
set to a learning rate of 0.01. After 50,000 iterations, we
reduce the learning rate by a factor of 10, and after 100,000
iterations we stop the multi-view training. These parameters
were determined using a hold-out validation set, and other
hyperparameters are taken from the default parameters for
CaffeNet [30].

Finally, we fine-tune the network to classify the single-
view objects. To do this, we replace the final layer with a KS

class classifier for the KS single-view objects. Each object
in this dataset has only 1 training example from a single
viewpoint. We use the same parameters as before, except
that the learning rates are reduced by a factor of 10, which
was again determined using cross-validation on a hold-out
set. The final classifier is used to classify these KS objects
from novel viewpoints. We call a classifier trained in this
manner a “neural network with multi-view pre-training.”

IV. RESULTS

We perform a number of experiments to analyze the
performance of different instance recognition methods. In
Sections IV-A through IV-C, we use the RGB-D object
dataset [4], in which we recognize objects that are placed
on a turntable and recorded from different viewpoints. In
this controlled setup, we can measure the object’s angular
difference between the training and test images, allowing us
to compute how robust the different methods are to out-of-
plane rotations. Finally, in Section IV-D we will evaluate the
methods on recognition of objects in cluttered scenes.

We evaluate the performance on this dataset under three
conditions:

1) Training from many examples (Section IV-A)



2) Training from a variable number of examples (Section
IV-B)

3) Training from just a single example (Section IV-C)
In all three cases, we use the same test set, which is the
RGB-D instance recognition test set [4].

We vary the number of examples available during training
to show how well each method generalizes with a limited
number of training examples. When multiple training ex-
amples are available, we compare the neural network-based
approaches to other machine learning approaches. When only
one training example is available, we also evaluate keypoint-
matching and other approaches that are designed to match
pairs of images. We find that neural networks have superior
performance in all three cases, and we further show the
advantage of multi-view pre-training in the case of training
from just a single example.

Finally, in Section IV-D, we evaluate how robust the
different classifiers are to handling occlusions and back-
grounds. For this we use the RGB-D scenes dataset [4], in
which the objects from the previous test set are placed in
a cluttered scene. Our task now is to recognize the object
given the object’s bounding box. In an end-to-end system,
the bounding box could be generated using one of the many
region proposal methods that have been developed for this
purpose [31], [32], [33], or the object can be segmented
from the scene using depth information [34], [35]. Although
we can no longer compute the angular difference between
training and test images in this less controlled setting, this
experiment allows us to determine how robust the different
methods are to recognition against a cluttered background
and under occlusions. For this task, we use the same training
set as before, i.e. training from just a single example. We also
evaluate the performance as a function of the noise in the
bounding box location and show that our method is robust
to such variations.

A. Instance recognition from many examples

We first evaluate our method using the RGB-D object
dataset [4], and we measure the performance when many
training examples are available. This dataset consists of 300
objects of different types and textures, ranging from apples
to cereal boxes. Given an image of one of these objects
taken from a novel viewpoint, our task is to identify which
of the 300 objects this image is taken from. We treat this
task as a 300-class classification problem, and we are thus
able to apply tools from machine learning to perform this
task. Objects are pre-segmented in the training and test sets
using depth information [4]. In Section IV-D we will explore
the performance of the different methods when objects are
placed in a cluttered scene where segmentation is not as
simple.

We initially evaluate our method using the “leave sequence
out” training setup [4]. In this setup, we observe each object
at a 30 degree and 60 degree elevation angle during training,
and we observe the object at a 45 degree elevation angle at
test time. During training, we observe the object from many
views spaced 6 to 9 degrees apart in azimuth.

TABLE I
TRAINING FROM MANY VIEWS

Method % Accuracy
SIFT + Texton + Color Hist [4] 60.7
SIFT + Texton + Color Hist + Spin Img + 3D BB [4] 74.8
Convolutional k-means descriptor [38] 90.4
HMP (Depth) [5] 51.7
HMP (RGB) [5] 92.1
HMP (RGB + Depth) [5] 92.8
Neural network (Ours) 93.3

The results for this setup when many training images are
available can be seen in Table I. One method that we compare
against combines a number of 2D and 3D features [4],
including dense SIFT [7], texton histograms [36], a color
histogram, spin images [37], and 3D bounding box size. The
methods that learn feature descriptors, such as [38] and [5],
perform significantly better, achieving accuracies between
90.4 and 92.1%. The results from [5] indicate that only small
gains are achieved by adding depth information, after the
initial depth-based segmentation.

We evaluate the performance of a neural network pre-
trained only with ImageNet (with no multi-view pre-
training). Using such a network, we are able to outperform all
of these previous methods, obtaining an accuracy of 93.3%.
This method uses depth information only for segmentation,
although depth could likely be used to further improve
recognition performance. However, in Section IV-B we show
that all of these approaches have poor performance when
the number of training examples per object is limited, thus
motivating the use of multi-view pre-training for such cases.

B. Varying the number of training images

We note that the dense training setup [4] used in Sec-
tion IV-A requires a fair amount of manual effort. Objects
were placed on a turn-table and recorded at many different
angles and elevations. A casual user will want to be able
to train a robot to recognize an object after taking only a
few pictures during training. Further, for training from a
typical product database (e.g. Amazon or Safeway), only a
few images of each object may be available.

We therefore create a new training setup to test the
performance of these methods when only a limited number
of training images are available. Each object is now viewed
at training time at only a 30 degree elevation angle. We
vary the number of azimuthal angles for which an object is
observed in training from 69 viewpoints down to just a single
viewpoint, and we show the performance as a function of the
number of training images. For any given number of training
images, we evenly sample from the available training images
for each object, starting from the first image. We can thus
use this setup to determine how the performance of different
methods are affected by the number of training examples.

Figure 2 shows the performance as we vary the number of
views available during training. We compare the performance
of the best methods of Section IV-A: HMP and a neural
network pre-trained only on ImageNet (without multi-view
pre-training).



As can be seen in this figure, the neural network saturates
performance after about 10 training images. On the other
hand, HMP [5] requires 20-30 training examples to saturate
performance, and the result is still worse than that of the neu-
ral network. However, both methods perform poorly when
only a single training example is available for each object.
Because this is a situation that occurs often in practice, we
would like to focus our attention on this scenario, which we
call “one-shot learning for instance recognition.” We will
show that, when we have only one training example per
object, we can improve the performance of a neural network
by performing multi-view pre-training.
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Fig. 2. We observe the effect on performance as we vary the number of
training examples for a neural network as well as for the HMP baseline.
The neural network that we evaluate here is pre-trained only on ImageNet,
with no multi-view pre-training. The y-axis in this plot is the error rate
(not accuracy). These results are not directly comparable to those of Table I
because in this setup we are training on only a 30 degree elevation angle,
whereas for Table I we trained on both 30 and 60 degree elevation angles.

C. One-shot Learning for Instance Recognition

1) Baseline Methods: In the next experimental setup, we
are given only a single training example of each object. At
test time, we would like to recognize each object from novel
viewpoints. We use the same test set as in Section IV-A,
making this a strictly harder (though more realistic) training
scenario. For all objects, we train on only one training image
at a 30 degree elevation angle, and we test on many different
azimuthal viewpoints at a 45 degree elevation angle.

The results for this setup are shown in Table II. The
keypoint-matching based methods perform poorly, ranging
from 1.6% accuracy for BRISK [39] to 6.3% accuracy for
SIFT [7].

As can be seen in Figure 3, HMP performs well when the
test example is viewed from a similar angle as the training
example. However, the performance drops off quickly as
the angular difference between the training and test example
increases. Note that, although we are varying the azimuthal
angle difference from 0 to 180 degrees, all of the images have
an additional 15 degree elevation angle difference between
training and test. Given just a single training example, HMP
is unable to find a good linear decision boundary that is
viewpoint-invariant. As we discussed above, about 20-30
images are required for HMP to have good performance (see
Figure 2).

2) Neural Networks: We first evaluate the performance
of a neural network that is pre-trained in the traditional
manner using ImageNet alone. After fine-tuning with just a
single image per object, the network achieves an accuracy of
59.2%. Compared to the next-best method, this is an absolute
improvement in accuracy of 16.9%, or a 29.3% drop in the
number of errors.

We next experiment to see if we can gain an additional
benefit from incorporating a separate multi-view dataset via
multi-view pre-training. Note that the objects in the multi-
view dataset are completely distinct from the 300 objects
that we are trying to recognize. For this experiment, we use
the multi-view BigBird dataset [1]. This dataset consists of
125 objects recorded from many different viewpoints, and to
ensure that we have no overlap with the set of test objects, we
remove the box of White Cheddar Cheez-it crackers, which
also appears in the RGB-D object dataset [4]. We sample
images from this dataset from 5 elevation angles and 20
azimuthal angles, for a total of 100 images per object. The
multi-view dataset that we incorporate thus consists of a total
of 12,400 images from 124 objects. Although this dataset
took a fair amount of manual effort to construct, we will
show that, once the network is pre-trained on this dataset, it
can learn to recognize new objects from just a single image.

Our multi-view pre-training procedure follows the method
described in Section III-C. After pre-training our network
on the 1.2 million images from ImageNet, we further pre-
train our network with the 124 objects from the multi-view
dataset. Finally, we fine-tune the resulting network on the
300 objects from our single-view dataset, using just a single
training example for each of the 300 objects.

Multi-view pre-training is especially impactful at improv-
ing the recognition of textured objects. By pre-training with a
multi-view dataset, we obtain a 10.6% absolute improvement
(or a 28.8% reduction in errors) on recognizing textured
objects compared to the neural network pre-trained only on
ImageNet. It is reasonable that multi-view pre-training gives
a larger increase in performance on textured than untextured
objects, since the appearance of textured objects changes
more as a function of viewpoint compared to untextured ob-
jects. Thus, training our network to be invariant to rotations
gives an especially large benefit for recognizing textured
objects from novel viewpoints. Table II indicates that multi-
view pre-training improves our performance for untextured
objects as well.

Note that the multi-view dataset contains only 1% as many
images as were used in the original ImageNet pre-training
step. It is surprising that, given only 1% more images, we
obtain a 10.6% improvement on the recognition of textured
objects. Figure 4 shows some examples of objects that our
method was able to correctly recognize that were incorrectly
recognized by a neural network pre-trained on ImageNet
alone.

D. Objects in a Scene

In the previous set of experiments, we used test objects
placed on a turntable so we could measure the rotational



TABLE II
ONE-SHOT INSTANCE RECOGNITION

% Accuracy
Method Overall Textured Untextured
Random guessing 0.3 0.3 0.3
BRISK [39] 1.6 2.6 1.3
ORB [40] 1.9 3.5 1.3
SURF [8] 3.4 5.3 2.6
BOLD [41] 5.2 5.9 4.9
SIFT [7] 6.3 12.6 3.9
Line-2D [14] 5.5 0.3 7.4
Color Histogram Intersection [42] 12.4 23.3 8.2
HMP (Depth) [5] 33.0 37.7 31.2
HMP (RGB) [5] 42.3 53.8 37.9
HMP (RGB + Depth) [5] 42.9 51.1 39.7
Neural Network (Ours) 59.2 63.2 57.6
Neural Network, MV + BG pre-train (Ours) 63.9 73.8 60.0
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Fig. 3. Average accuracy as a function of the azimuthal angle difference between test examples and the corresponding training example. Note that in all
cases there is a 15 degree elevation difference between training and test images. The machine learning methods have a small increase in performance near
180 degrees due to the rotational symmetry of some of the objects.

invariance of different methods in a controlled setting. How-
ever, for most applications we would want to be able to detect
objects in a full scene, with a real background and occlu-
sions. To measure whether our neural network with multi-
view pre-training still gives the best performance in this more
realistic setting, we used the RGB-D Scenes Dataset [4].
This dataset has per-frame bounding box annotations, which
makes it suitable for our evaluation purposes. We crop the
ground-truth bounding box from the scene and then classify
the resulting image. The results can be found in Table III. As
can be seen, multi-view pre-training improves performance
even for objects placed in an indoor setting with a cluttered
background and occlusions.

Note that the overall accuracies here are fairly low for all
methods. Pre-training on the multi-view dataset teaches our
network to be robust to rotations, but we are still not fully
robust to lighting changes, occlusions, or other variations.
However, our multi-stage pre-training approach is general,
and with the proper auxiliary dataset, we should be able to
learn these invariances as well. For example, to learn lighting
invariance, we would perform multi-stage pre-training with
videos of objects undergoing a lighting change.

To make our network robust to recognizing objects under
novel backgrounds, the objects used for multi-view pre-
training (BigBird [1]) were synthetically placed against ran-

TABLE III
ONE-SHOT INSTANCE RECOGNITION IN A SCENE.

Method % Accuracy
Random guessing 0.3
BRISK [39] 9.4
ORB [40] 6.6
SURF [8] 10.8
BOLD [41] 7.4
SIFT [7] 12.9
Line-2D [14] 0.9
Color Hist Intersection [42] 9.2
HMP [5] 25.4
NN (Ours) 41.0
NN + MV + BG (Ours) 44.1

dom scenes taken from the background category of the RGB-
D scenes dataset [4], as explained in Section III-B.

In Table IV, we demonstrate the advantage of multi-
view pre-training against a random background. ”NN” is
the baseline method with no pre-training. ”NN + MV”
is the method with multi-view pre-training, and ”NN +
MV + BG” is the method with multi-view pre-training on
synthetic backgrounds. When the test images are part of a
real scene, pre-training with a random background increases
robustness, improving accuracy by 2.6%. This demonstrates
that pre-training on random backgrounds teaches our network



Fig. 4. Examples that were classified correctly using multi-view pre-
training but were incorrectly classified using a neural network pre-trained
only on ImageNet. Left: Query image. Middle: Guess by neural network
pre-trained only on ImageNet (incorrect). Right: Guess with multi-view pre-
training (correct).

TABLE IV
DIFFERENT TYPES OF NEURAL NETWORK PRE-TRAINING FOR

RECOGNIZING OBJECTS IN A SCENE.

Method % Accuracy
NN 41.0
NN + MV (Ours) 41.5
NN + MV + BG (Ours) 44.1

to be robust to new backgrounds, even when the single-
view objects being recognized are trained against a solid
background.

We can also analyze the performance as a function of
the noise in the bounding box location. To do this, for
each bounding box we sampled a scaling factor s and a
displacement ∆x and ∆y. These values are sampled from
a distribution that varies with a noise parameter n:

s ∼ |N (1, 0.025n)| (1)
∆x ∼ N (0, 2n) (2)
∆y ∼ N (0, 2n) (3)

The test crop locations are then scaled by the scaling factor
and shifted by ∆x and ∆y pixels. Examples of noisy images
can be seen in Figure 5. Figure 6 shows the accuracy as
a function of the noise parameter n ∈ [0, 10]; as seen,
our method is robust to noise in the bounding box location
and still significantly outperforms the baseline methods. For
this experiment, the HMP baseline method only uses RGB
information, since the previous experiments of Sections IV-

A and IV-C show that adding depth has only a minor effect
on performance.

Fig. 5. Left: Crops from a scene used to test robustness to background
and occlusions. Right: The same crops with maximum noise added, to test
robustness to bounding box noise.

Fig. 6. Instance recognition accuracy as a function of the bounding box
noise parameter n.

E. Multiview Pre-training analysis

We can analyze which layers of the neural network are
benefiting most from multi-view pre-training. Recall that,
for our experiments, we hold the convolutional layers fixed
(Section III-C). Table V shows the effect of fixing different
layers during multi-view pre-training, evaluated on the RGB-
D objects dataset. If we hold the convolutional and both
fully connected layers fixed, then we get the baseline per-
formance (equivalent to not using multi-view pre-training).
The biggest improvement seems to come from fine-tuning
fc6. It seems that multi-view pre-training teaches the fully-
connected layers the appropriate relationships between the
convolutional features so that the network can be robust to
viewpoint changes.

TABLE V
FIXING DIFFERENT LAYERS DURING MULTI-VIEW PRE-TRAINING.

Method % Accuracy
Baseline (no fine-tuning) 59.2
Fine-tuning just fc7 60.9
Fine-tuning just fc6 + fc7 63.9
Fine-tuning all 65.1



V. CONCLUSION

We are able to train a neural network to recognize object
instances from novel viewpoints given only a single training
image of each object. By pre-training our network with
multiple views of a separate set of objects, the network learns
an increased robustness to viewpoint changes compared to
pre-training only on class-level datasets. We show that neural
networks with multi-view pre-training outperform previous
state-of-the-art methods for instance recognition on both
textured and untextured objects.

Thus, multi-view pre-training can make neural networks
more robust to recognizing object instances under viewpoint
changes. Such a method can be useful for a number of
applications, enabling a user to train a robot to recognize a set
of objects from just a single image per object. In the future,
we hope to use our method to bootstrap a vision system,
enabling the system to add more images to its training
set over time in a semi-supervised fashion. Multi-view pre-
training provides a useful initialization for such an approach,
and the network’s performance continues to improve as more
images are added, thus enabling life-long learning and robust
perception.
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[32] P. Krähenbühl and V. Koltun, “Geodesic object proposals,” in ECCV.
Springer, 2014, pp. 725–739.

[33] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized
normed gradients for objectness estimation at 300fps,” in CVPR.
IEEE, 2014, pp. 3286–3293.

[34] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” Ph.D. dissertation, Computer Science
department, Technische Universitaet Muenchen, Germany, October
2009.

[35] A. K. Mishra and Y. Aloimonos, “Visual segmentation of simple
objects for robots,” Robotics: Science and Systems VII, pp. 1–8, 2012.

[36] T. Leung and J. Malik, “Representing and recognizing the visual ap-
pearance of materials using three-dimensional textons,” IJCV, vol. 43,
no. 1, pp. 29–44, 2001.

[37] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 21, no. 5, pp. 433–449, 1999.

[38] M. Blum, J. T. Springenberg, J. Wulfing, and M. Riedmiller, “A
learned feature descriptor for object recognition in rgb-d data,” in
ICRA. IEEE, 2012, pp. 1298–1303.

[39] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in ICCV. IEEE, 2011, pp. 2548–2555.

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in ICCV. IEEE, 2011, pp. 2564–2571.

[41] F. Tombari, A. Franchi, and L. Di, “Bold features to detect texture-less
objects,” in ICCV. IEEE, 2013, pp. 1265–1272.

[42] M. J. Swain and D. H. Ballard, “Color indexing,” IJCV, vol. 7, no. 1,
pp. 11–32, 1991.


