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Abstract—This paper presents a principled framework for analyzing collective activities at different levels of semantic granularity from

videos. Our framework is capable of jointly tracking multiple individuals, recognizing activities performed by individuals in isolation (i.e.,

atomic activities such as walking or standing), recognizing the interactions between pairs of individuals (i.e., interaction activities) as

well as understanding the activities of group of individuals (i.e., collective activities). A key property of our work is that it can coherently

combine bottom-up information stemming from detections or fragments of tracks (or tracklets) with top-down evidence. Top-down

evidence is provided by a newly proposed descriptor that captures the coherent behavior of groups of individuals in a spatial-temporal

neighborhood of the sequence. Top-down evidence provides contextual information for establishing accurate associations between

detections or tracklets across frames and, thus, for obtaining more robust tracking results. Bottom-up evidence percolates upwards so

as to automatically infer collective activity labels. Experimental results on two challenging data sets demonstrate our theoretical claims

and indicate that our model achieves enhances tracking results and the best collective classification results to date.

Index Terms—Collective activity recognition, tracking, tracklet association

Ç

1 INTRODUCTION

A common paradigm in activity recognition research is
to analyze the actions (e.g., walking, jogging, dancing)

performed by single individuals in isolation (which we refer
as to atomic activities) [26], [29], [36]. These are characterized
by looking at the behavior of individuals independently of
what other individuals are doing in the surrounding scene.
In many application scenarios (such as surveillance, video
analysis and retrieval), however, it is critical to analyze the
collective behavior of individuals (which we refer as to col-
lective activities) as well as the way such individuals interact
[7], [21], [35]. For instance, the collective activity gathering
involves multiple individuals walking (an atomic activity),
looking and facing each other (FE) (an interaction) and/or
moving in a coherent spatial temporal structure toward a
certain spatial location (Fig. 1).

Reasoning about collective activities, interactions, and
atomic activities, is a very challenging problem. Such an
activity recognition system may require that all of (or some
of) the following tasks are performed reliably and accu-
rately: i) identifying stable and coherent trajectories of each
individual (tracks); ii) Estimating each individual’s proper-
ties such as human pose and their atomic actions; iii) Dis-
covering the interaction between pairs of individuals; iv)
Recognizing the collective activity present in the scene. As
shown in [12], [41], tracking multiple individuals at the
same time (as well as estimating relevant properties) is

extremely difficult because of self-occlusions, detection
faults, illumination changes, camera shake or movement,
etc. This often leads to fragmented trajectories (tracklets)
which are not descriptive enough to enable the construction
of reliable interaction models. Moreover, assigning atomic
activity labels to individuals that coexist in close proximity
can be very problematic. This problem has been mostly
ignored in the literature.

In this paper we explore the intuition that contextual
information provided by the collective behavior of multiple
interacting individuals can make the tracking and recogni-
tion process more accurate and robust than if these prob-
lems are solved in isolation. For instance, if one knows that
the people in the scene are gathering (Fig. 1), one can infer
that a number of people should be approaching (interaction),
moving toward a point of convergence, facing each other
while performing a walking action. This gives strong con-
straints on each individual spatial-temporal trajectory,
which enable the construction of more accurate tracks. Con-
textual information about collective behavior is provided by
a newly proposed descriptor which we have called crowd
context. In turn, if better trajectories are obtained, the inter-
action and the collective behavior can be estimated more
accurately. Following this intuition, we argue that track
association, atomic activity recognition, and collective activ-
ity recognition must be performed in a coherent fashion, so
that each component can help the other.

2 RELATED WORK

Target tracking is a well studied problems in computer
vision, but it is far from being solved. In challenging
scenes such as that in Fig. 13, tracks are not complete,
but are fragmented into tracklets. It is the task of the
tracker to associate tracklets in order to assemble com-
plete tracks. Tracks are often fragmented due to occlu-
sions, ambiguities in the appearance properties of the
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targets and sharp camera movements. Recent algorithms
address this through the use of detection responses [12],
[41], and the idea of contextualizing adjacent tracks
using pairwise interaction models [5], [19], [23], [30],
[37], [42]. The interaction models, however, are typically
limited to a few hand-designed interactions, such as
attraction and repulsion. Methods such as [33] leverage
the consistency and physical behavior of flows of large
crowds of individuals, but do not attempt to associate
tracklets or understand the actions of individuals. Zhang
et al. [44] and Pirsiavash et al. [31] formulate the prob-
lem of multi-target tracking into a min-cost flow network
based on linear/dynamic programming. Although both
methods model interactions between people, they still
rely on heuristics to guide the association process via
higher level semantics.

A number of methods have recently been proposed
for action recognition by extracting sparse features [11],
correlated features [36], discovering hidden topic models
[29], or feature mining [26]. These works consider only a
single person, and do not benefit from the contextual
information available from recognizing interactions and
activities. Ryoo and Aggarwal [34] model the pairwise
interactions between people, but their representation is
limited to using local motion features. Several works
address the recognition of group activities in sport
events such as in baseball or football games by learning
a storyline model [14], reasoning the social role of indi-
vidual players [20], modelling the trajectories of people
with Bayesian networks [16], temporal manifold struc-
tures [25], and non-stationary kernel hidden Markov
models [39]. All these approaches, however, assume that
the trajectories are available (known). Recently, Ni et al.
[28] recognize group activities by considering local cau-
sality information from each track, each pair of tracks,
and groups of tracks. In our own work in [7], we classify
collective activities by extracting descriptors from people
and the surrounding area, and in [8] we extend it by
learning the structure of the descriptor from data. Ryoo
and Aggarwal [35] model a group activity as a stochastic

collection of individual activities. None of these works
exploit the contextual information provided by collective
activities to help identify targets or classify atomic activi-
ties. Lan et al. [21] and Amer et al. [1] use a hierarchical
model to jointly classify the collective activities of all
people in a scene, but they are restricted to modelling
contextual information in a single frame, without seeking
to solve the track identification problem. A number of
works [9], [18], [27], [32], [45] has been proposed to rec-
ognize group behavior in videos, but they do not seek to
characterize the behavior of each individual.

Our contributions are five-fold: (i) we propose a graphi-
cal model that merges for the first time the problems of col-
lective activity recognition and multiple target tracking into
a single coherent framework [6]. The model coherently com-
bines bottom-up information stemming from detections or
fragments of tracks (tracklets) with top-down evidence
(Section 3); (ii) we characterize top-down evidence by using
a newly proposed descriptor [7], [8] that captures spatio-
temporal relationship among people (Section 4); (iii) we
introduce a novel path selection algorithm that leverages
target interactions for guiding the process of associating tar-
gets (Section 5); (iv) we propose a novel inference procedure
based on the branch-and-bound (BB) formulation for solv-
ing the target association problem using the contextual
information coming from the interaction models (Section 7);
(v) we present an extensive quantitative evaluation on chal-
lenging data sets, showing superiority to the state-of-the-art
(Section 9).

3 MODELING COLLECTIVE ACTIVITY

Our model accomplishes collective activity classification by
simultaneously estimating the activity of a group of people
(collective activity C), the pairwise relationships between
individuals (interactions activities I), and the specific activi-
ties of each individual (atomic activities A) given a set of
observations O (see Fig. 1). A collective activity describes
the overall behavior of a group of more than two people,
such as gathering, talking, and queuing. Interaction activities

Fig. 1. In this paper, we aim at jointly and robustly tracking multiple targets and recognizing the activities that such targets are performing. (a): The
collective activity “ gathering” is characterized as a collection of interactions (such as “ approaching” (AP)) between individuals. Each interaction is
described by pairs of atomic activities (e.g., “ facing-right” and “facing-left” ). Each atomic activity is associated with a spatial-temporal trajectory
(tracklet t). We advocate that high level activity understanding helps obtain more stable target trajectories. Likewise, robust trajectories enable more
accurate activity understanding. (b): The hierarchical relationship between atomic activities (A), interactions (I), and collective activity (C) in one
time stamp is shown as a factor graph. Squares and circles represent the potential functions and variables, respectively. Observations are the track-
lets associated with each individual along with their appearance properties Oi as well as crowd context descriptor Oc [7], [8] (Section 3.1). (c): A col-
lective activity at each time stamp is represented as a collection of interactions within a temporal window. An interaction is described by a pair of
atomic activities within specified temporal window (Section 3.2). Non-shaded nodes are associated with variables that need to be estimated and
shaded nodes are associated with observations.
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model pairwise relationships between two people which
can include approaching, facing-each-other and walking-in-
opposite-directions (WO). The atomic activity collects seman-
tic attributes of a tracklet, such as poses (facing-front, facing-
left) or actions (walking, standing). Feature observations O ¼
ðO1; O2; . . .ONÞ operate at a low level, using tracklet-based
features to inform the estimation of atomic activities. Collec-
tive activity estimation is helped by observations OC , which
use features such as spatio-temporal local descriptors (Sec-
tion 4) to capture the coherent behavior of individuals in a
spatial-temporal neighborhood. At this time, we assume
that we are given a set of tracklets t1; . . . ; tN that denote all
targets’ spatial location in 2D or 3D. These tracklets can be
estimated using methods such as [5]. Tracklet associations
are denoted by T ¼ ðT1; T2; . . . ; TMÞ and indicate the associa-
tion of tracklets. We address the estimation of T in Section 5.

The information extracted from tracklet-based observa-
tions O enables the recognition of atomic activities A, which
assist the recognition of interaction activities I, which are
used in the estimation of collective activities C. Concur-
rently, observations Oc provide evidence for recognizing C,
which are used as contextual clues for identifying I, which
provide context for estimating A. The bi-directional propa-
gation of information makes it possible to classify C, A, and
I robustly, which in turn provides strong constraints for
improving tracklet association T . Given a video input, the
hierarchical structure of our model is constructed dynami-
cally. An atomic activity Ai is assigned to each tracklet ti
(and observation Oi), an interaction variable Iij is assigned
to every pair of atomic activities that exist at the same time,
and all interaction variables within a temporal window are
associated with a collective activity C.

3.1 The Model

The graphical model of our framework is shown in Fig. 1.
Let O ¼ ðO1; O2; . . .ONÞ be the N observations (visual fea-
tures within each tracklet) extracted from video V , where
observation Oi captures appearance features siðtÞ, such as
histograms of oriented gradients (HoG [10]), and spatio-
temporal features uiðtÞ, such as a bag of video words (BoV
[11]). t corresponds to a specific time stamp within the set of
frames T V ¼ ðt1; t2; . . . ; tZÞ of video V , where Z is the total
number of frames in V . Each observation Oi can be seen as a
realization of the underlying atomic activity Ai of an indi-
vidual. Let A ¼ ðA1; A2; . . . ; ANÞ. Ai includes pose labels

piðtÞ 2 P, and action class labels aiðtÞ 2 A at time t 2 T V . P
and A denote the set of all possible pose (e.g., facing-front)
and action (e.g., walking) labels, respectively. I ¼ ðI12;
I13; . . . ; IN�1NÞ denotes the interactions between all possible
(coexisting) pairs of Ai and Aj, where each Iij ¼ ðIijðt1Þ;
. . . IijðtZÞÞ and IijðtÞ 2 I is the set of interaction labels such
as approaching, facing-each-other and standing-in-a-row. Simi-
larly, C ¼ ðCðt1Þ; . . . ; CðtZÞÞ and CðtiÞ 2 C indicates the col-
lective activity labels of the video V , where C is the set of
collective activity labels, such as gathering, queueing, and
talking. In this work, we assume there exists only one collec-
tive activity at a certain time frame. Extensions to modelling
multiple collective activities will be addressed in the future.
T describes the target (tracklet) associations in the scene as
explained in Section 3.

We formulate the classification problem in an energy
maximization framework [24], with overall energy function
CðC; I;A;O; T Þ. The energy function is modelled as the lin-
ear product of model weights w and the feature vector c :

CðC; I;A;O; T Þ ¼ wTcðC; I;A;O; T Þ (1)

cðC; I;A;O; T Þ is a vector composed of c1ð�Þ;c2ð�Þ; . . . ;cmð�Þ
where each feature element encodes local relationships
between variables and w, which is learned discriminatively,
is the set of model parameters. High energy potentials are
associated with configurations of A and I that tend to co-
occur in training videos with the same collective activity C.
For instance, the talking collective activity tends to be charac-
terized by interaction activities such as greeting, facing-each-
other and standing-side-by-side, as shown in Fig. 2.

3.2 Model Characteristics

The central idea of our model is that the atomic activities
of individuals are highly correlated with the overall col-
lective activity, through the interactions between people.
This hierarchy is illustrated in Fig. 1. Assuming the condi-
tional independence implied in our undirected graphical
model, the overall energy function can be decomposed as
a summation of seven local potentials: CðC; IÞ, CðC;OÞ,
CðI; A; T Þ, CðA;OÞ, CðCÞ, CðIÞ, and CðAÞ. The overall
energy function can easily be represented as in Eq. (1) by
rearranging the potentials and concatenating the feature
elements to construct the feature vector c. Each local
potential corresponds to a node (in the case of unitary
terms), an edge (in the case of pairwise terms), or a high

Fig. 2. (a) Each interaction is represented by a number of atomic activities Ai that are characterized by an action and pose label. For example, with
interaction I ¼ standing-in-a-row (SR), it is likely to observe two people with both pose p ¼ facing-left and activity a ¼ standing-still, whereas it is less
likely that one person has p ¼ facing-left and the other p ¼ facing-right. (b): Collective activity C is represented as a collection of interactions I. For
example, with C ¼ talking collective activity, it is likely to observe the interaction I34 ¼ facing-each-other, and I23 ¼ standing-side-by-side (SS). The
consistency of C; I12; I23; I34 generates a high value for CðC; IÞ.
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order potential seen on the graph in Fig. 1c: 1) CðC; IÞ
encodes the correlation between collective activities and
interactions (Fig. 2b). 2) CðI; A; T Þ models the correlation
between interactions and atomic activities (Fig. 2a).
3) CðCÞ, CðIÞ and CðAÞ encode the temporal smoothness
prior in each of the variables. 4) CðC;OÞ and CðA;OÞ
model the compatibility of the observations with the col-
lective activity and atomic activities, respectively.

Collective-Interaction CðC; IÞ: The function is formulated
as a linear multi-class model [40]:

CðC; IÞ ¼
X

t2T V

X

a2C
waci � hðI; t;4tCÞIIða; CðtÞÞ; (2)

where wi is the vector of model weights for each class of col-
lective activity, hðI; t;4tCÞ is an I dimensional histogram
function of interaction labels around time t (within a tempo-
ral window �~tC), and IIð�; �Þ is an indicator function, that
returns 1 if the two inputs are the same and 0 otherwise.

Collective Activity Transition CðCÞ: This potential models
the temporal smoothness of collective activities across adja-
cent frames. That is,

CðCÞ ¼
X

t2T V

X

a2C

X

b2C
wabc IIða;CðtÞÞIIðb; Cðtþ 1ÞÞ: (3)

Interaction Transition CðIÞ ¼
P

i;j CðIijÞ: This potential
models the temporal smoothness of interactions across adja-
cent frames. That is,

CðIijÞ ¼
X

t2T V

X

a2I

X

b2I
wabi IIða; IijðtÞÞIIðb; Iijðtþ 1ÞÞ: (4)

Interaction-Atomic CðI; A; T Þ ¼
P

i;j CðAi;Aj; Iij; T Þ: This
encodes the correlation between the interaction Iij and the
relative motion between two atomic motions Ai and Aj

given all target associations T (more precisely the trajecto-
ries of Tk and Tl to which ti and tj belong, respectively).
The relative motion is encoded by the feature vector c and
the potential CðAi;Aj; Iij; T Þ is modeled as:

CðAi;Aj; Iij; T Þ ¼
X

t2T V

X

a2I
waai � cðAi;Aj; T ; t;4tIÞIIða; IijÞ;

(5)

where cðAi;Aj; T ; t;4tIÞ is a vector representing the rela-
tive motion between two targets within a temporal window
(t�4tI , tþ4tI) and waai is the model parameter for each
class of interaction. The feature vector is designed to encode
the relationships between the locations, poses, and actions
of two people. See Section 3.3 for details. Note that since
this potential incorporates information about the location of
each target, it is closely related to the problem of target asso-
ciation. The same potential is used in both the activity classi-
fication and the multi-target tracking components of our
framework.

Atomic Prior CðAÞ: Assuming independence between
pose and action, the function is modelled as a linear sum of
pose transition CpðAÞ and action transition CaðAÞ. This
potential function is composed of two functions that encode

the smoothness of pose and action. Each of them is parame-
terized as the co-occurrence frequency of the pair of varia-
bles similar to CðIijÞ.
Observations CðA;OÞ ¼

P
i CðAi;OiÞ and CðC;OÞ: these

model the compatibility of atomic (A) and collective (C)
activity with observations (O). Details of the features for
atomic activities and collective activities are explained in
Sections 9 and 4, respectively.

3.3 Interaction Feature

We model the interaction feature as a combination of three
types of relative motion features, cl, cp, and ca. Each of the
feature vector encodes relative motion (distance and veloc-
ity), one’s location in another’s viewpoint, and co-occurring
atomic action. All of them are represented as a histogram so
as to capture a non-parametric statistics of interactions.

� cl is a feature vector that captures the relative position
of a pair of people. In order to describe the motion of
one respect to the other, cl is represented as a histo-
gram of velocity and location difference between the
two within a temporal window (t�4t; tþ4t).

� cp encodes a person’s location with respect to the
other’s viewpoint. First, we define the ith target cen-
tric coordinate system for each time t by translating
the origin of the system to the location of the target i
and rotating the x-axis along the viewing direction
(pose) of the target i. At each time stamp t in the tem-
poral window, the angle of each target within the
others’ coordinate system is computed and discre-
tized angle is obtained (see Fig. 3) in order to
describe the location of one person in terms of the
viewpoint of the other. Given each location bin, his-
togram cp is built by counting the number of occur-
rences of the bin number pair to encode the spatial
relationship between two targets within a temporal
window (t�4t; tþ4t).

� ca models co-occurrence statistics of atomic actions
of the two targets within a temporal window (t�4t,
tþ4t). It is represented as a jAj � ðjAj þ 1Þ=2
dimensional vector of ðaiðtÞ; ajðtÞÞ histogram.

Fig. 3. Illustration of target centric coordinate and histogram cp. Left-top
and Right-top illustrate typical example of facing-each-other and stand-
ing-in-a-line interaction. Given the 3D location (circle) and pose (arrow)
of target Ai and Aj, each one’s location in terms of the other’s view point
is obtained as a discretized angle (numbers on the figure); e.g., in the
left example, both red and blue people are in the 0th bin of the other’s
view point. The histograms fp of each example (bottom) are built by
counting number of co-occuring discretized angle in a temporal window.
With the facing-each-other interaction, it is highly likely to observe two
people located in 0; 1; 7th bin of the other’s view, producing a pattern sim-
ilar to the one shown in the bottom-left. On the other hand, with the
standing-in-a-line interaction, it is more likely to observe one in 0; 1; 7th
bin while the other is in 3; 4; 5th bin, generating a pattern similart to the
one shown in the bottom-right.
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Note that the first two features cl;cp are dependent on
the trajectories of the two targets. Thus, change in associ-
ation will result in a higher or lower value of an interac-
tion potential.

4 CROWD CONTEXT

In this section, we introduce the definition of the crowd con-
text and describe its mathematical formulation given a set of
spatio-temporal trajectories. The concept of crowd context
is originally introduced in our works [7], [8]. The crowd
context captures the coherent behavior of individuals in time
and space that are performing a certain collective activity.
Such contextual information encodes the direct observation
cue for the collective activities (CðC;OÞ in Section 3).

A naive way for characterizing the crowd context is by
encoding the spatial-temporal dependencies of individu-
als in a neighborhood of the video sequence. This can be
done by using the spatial-temporal-local (STL) descriptor
introduced in [7]. The STL descriptor is in essence a
fixed-dimensional vector (Fig. 4) and is associated to each
person. For each time stamp, the STL descriptors are used
to classify the collective activity using a standard support
vector machine (SVM) [4] classifier. Temporal smoothness
is enforced by applying a markov chain model across
each time stamp. Though the method shows promising
results, such rigid descriptors require the parameters that
control the structure of the descriptor to be manually
tuned, which can be extremely difficult in presence of
large intra-class variability. Such limitation can be
addressed by introducing a new scheme called random-
ized spatio temporal volume (RSTV) which is used to
automatically learn the best structure of the descriptor. In

the following sections, we review the rigid STL descriptor
first and the extended RSTV later.

4.1 Rigid STL Descriptor

In this section, we describe how to extract an STL descriptor
for each individual (track) in each time stamp given a set of
tracklets ft1; t2; . . . ; tNg, where ti ¼ fli; pi; tig is an individ-
ual tracklet and li ¼ ðxi; yiÞ, pi and ti are sequences of x, y
location, pose and time index, respectively. Note that the
pose captures the orientation of an individual in this frame-
work (e.g., left, front, right, and back).

Given a person i in certain time stamp t (the anchor), they
determine the locations lij and poses pij of other individuals
in the anchor’s coordinate system, where the anchor’s coor-
dinate system has the origin at the anchor’s ðx; yÞ location
and is oriented along the pose direction of the anchor (see
Fig. 4 top). The space around each anchor i at time t is
divided into multiple bins following a log-polar space parti-
tion similar to the shape context descriptor [2]. Moreover,
for each spatial bin, P “pose” bins are considered where P
is the number of poses that are used to describe a person ori-
entation. Finally, the temporal axis is also decomposed in
temporal bins around time stamp t. This spatial, temporal
and pose sensitive structure is used to capture the distribu-
tion of individuals around the anchor i at time t and con-
struct the STL descriptor. For each anchor i and time stamp
t, an STL descriptor is obtained by counting the number of
individuals that fall in each bin of the structure described
above. Thus, the STL descriptor implicitly embeds the flow
of people around the anchor over a number of time stamps.
After accumulating the information, the descriptor is nor-
malized by the total number of people that fall in the spatio-
temporal extension of the descriptor.

There are a number of important characteristics of the STL
descriptor. First, the descriptor is rotation and translation
invariant. Since the relative location and pose of individuals
are defined in the anchor’s coordinate system, the descriptor
yields a consistent representation regardless of the orienta-
tion and location of the anchor in the world. Moreover, the
dimensionality of the descriptor is fixed regardless of the
number of individuals that appear in the video sequence.
This property is desirable in that it allows to represent an
activity using a data structure that is not a function of the
specific instantiation of a collective activity. Finally, by dis-
cretizing space and time into bins, the STL descriptor enables
a classification scheme for collective activities that is robust
to variations in the spatio-temporal location of individuals
for each class of activity (intra-class variation).

Given a set of STL descriptors (each person in the video
is associated to a STL descriptor) along with the associated
collective activity labels, one can solve the collective activity
classification problem by using a classification method such
as SVM [4]. In order to capture various levels of temporal
granularity, the authors of [7] adopt SVM classifier
equipped with a temporal pyramid intersection kernel (see
Fig. 4 bottom right). The temporal axis is divided into four
hierarchical levels of temporal windows and intersection
kernel is defined per each level. The finest temporal win-
dow allows to capture the detailed motion of individuals
around the anchors; the highest level allows to encode the

Fig. 4. Spatio-Temporal Local Descriptor. (a) Space around anchor
person (blue) is divided into multiple bins. The pose of the anchor
person (blue arrow) locks the “orientation” of the descriptor which
induces the location of the reference bin “1”. (b) Example of STL
descriptor-the descriptor is a histogram capturing people and pose
distribution in space and time around the anchor person. (c) Classifi-
cation of STL descriptor is achieved by decomposing the histogram
in different levels along the temporal axis.
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overall distribution of people around the anchor over the
observed period. This classification scheme is used as a
baseline method in Section 9.

4.2 Learning the Crowd Context

The STL descriptor is limited in that the structure of the bins
of the STL descriptor is predefined beforehand and parame-
ters such as the minimum distance from the anchor or the
maximum support of the descriptor are defined once for all.
In particular, by assuming that the spatial support has fixed
size, the STL descriptor does not have the ability to adap-
tively filter out background activities or activities that differ
from the dominant one.

In order to avoid above mentioned limitations, we intro-
duce a novel scheme, called Randomized Spatio-Temporal
Volume. The RSTV approach is based on the same intuition
as STL that crowd context can be captured by counting the
number of people with a certain pose and velocity in fixed
regions of the scene, relative to an anchor person. However,
RSTV extends this intuition and considers variable spatial
regions of the scene with a variable temporal support. The
full feature space contains the evidence extracted from the
entire videos: the location of each individual in anchor’s
coordinates as well as the velocity and pose of each individ-
ual per video frame. This can be interpreted as a soft bin-
ning scheme where the size and locations of bins are
estimated by a random forest so as to obtain the most dis-
criminative regions in the feature space. Over these regions,
the density of individuals is inspected, which can be used
for classification. Fig. 5 compares the rigid STL binning
scheme and the flexible RSTV. RSTV is a generalization of
the STL in that the rigid binning restriction imposed in the
STL is removed. Instead, portions of the continuous spatio-
temporal volume are sampled at random and the discrimi-
native regions for classification of a certain activity are
retained. RSTV provides increasing discrimination power
due to increased flexibility.

There are several benefits of the RSTV framework
over rigid STL descriptor. 1) The RSTV automatically
determines the discriminative features in the feature
space that are useful for classification. Indeed, while STL
proposes a rigid and arbitrary decomposition of the fea-
ture space, in RSTV the binning space is partitioned so
as to maximize discrimination power. 2) Unlike STL,
there are no parameters that are to be learned or selected
empirically (e.g., support distance, number of bins). 3) It
enables robustness to clutter. Indeed, unlike STL, the

RSTV does not operate given fixed parameters such as
radial support and number of spatial bins, but explores
the possible space of parameters; thus the density fea-
ture, using which classification is performed, is only cal-
culated over regions relevant to each different activity.
Hence the classification evidence is pertinent to each
activity and avoid clutter that possibly arises from hard-
coded framework parameters that may be tuned to
achieve optimal classification of a few activities, but not
all. Notice that STL concept is similar to the Shape Con-
text [2] descriptor, which is known to be susceptible to
clutter due to non discriminative inclusion of all points
within the radial support.

Learning RSTV with Random Forest: We use a Random
Forest classifier to learn the structure of RSTV given training
data. A Random forest [3] is an ensemble of many singular
classifiers known as decision trees which is trained from a
portion of the training data. The training set is subdivided
into multiple bags by random sampling with replacement
(bagging) in order to reduce the effect of over-fitting. Given
each set, one random decision tree is trained following suc-
cessively drawing and selection of a random feature that
best discriminates the given training set [3].

The RSTV is trained based on the random forest classifier
given a set of training data and associated activity labels
(xi; yi) where each data point is defined for each person and
time stamp. In following description, it is assumed that the
trajectories and poses of all people are already transformed
into the anchor’s coordinate system to form data point xi
and associated activity label yi. Given a random bag, a ran-
dom decision tree is learned by recursively discovering the
most discriminative features. The algorithm first random-
izes over different volumes of the feature space and second
randomizes over different decision thresholds given the fea-
ture subspace. The feature is defined as the number of peo-
ple lying in a spatio-temporal volume that is specified by
location (lk), velocity (vk), pose (pk) and time (t) defined in
the anchor’s (k) coordinate system. A unique spatio-tempo-
ral volume is specified by a number of parameters: 1) mini-
mum and maximum distance dmin; dmax, 2) minimum and
maximum angle in the space umin, umin, 3) relative orienta-
tion/pose p, 4) temporal window tmin, tmax and 5) minimum
and maximum velocity vmin; vmax (Fig. 5 right). In each
node, a number M of such hyper-volume rn and a scalar
decision threshold dn is drawn randomly multiple times.
Given the feature pair ðrn; dnÞ, the training data is parti-
tioned into two subsets Ir and Il by testing fðx; rnÞ > dn,
where fðx; rnÞ is a function that counts the number of peo-
ple lying in the hyper volume rn. Among the set of candi-
date features, the one that best discriminates the training
data into two partitions is selected by examining the infor-
mation gain (Eq. (6)).

DE ¼ � jIljjIj EðIlÞ �
jIrj
jIj EðIrÞ; where EðIÞ

¼ �
XC

i¼1

pi log2ðpiÞ;
(6)

Il and Ir are the partition of set I divided by given feature, C
is the number of activity classes, pi is the proportion of col-
lective activity class i in set I, and jIj is the size of the set I.

Fig. 5. STL counts the number of people in each spatio-temporal and
pose bins that are divided following a hand defined parameterization
(left). On the other hand, the RSTV learns what spatial bins are useful
(shown as a trapezoid-like volume) in order to discriminate different col-
lective activities and discards the regions (shown as empty regions) that
are not helpful for such discrimination task (middle). A random spatio-
temporal volume (feature) is specified by a number of parameters (right).
Pose and velocity are omitted from the illustration.
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Typical examples of learned RSTV structure is shown in
Fig. 6. The detailed algorithm for learning RSTV is pre-
sented in Algorithm 1 and Algorithm 2.

Given the learned RSTV forests, one can classify a novel
testing example x by passing down the example along each
tree and taking the class that maximizes marginal posterior
probability P ðyjxÞ ¼

P
tree PtreeðyjxÞ over all trees. The pos-

terior probability of a tree is defined as the corresponding py
in the leaf node that the testing example reached in the
decision tree.

5 MULTIPLE TARGET TRACKING

Our multi-target tracking formulation follows the philoso-
phy of [38], where tracks are obtained by associating corre-
sponding tracklets. Unlike other methods, we leverage the
contextual information provided by interaction activities to
make target association more robust. Here, we assume that

a set of initial tracklets, atomic activities, and interaction
activities are given. We will discuss the joint estimation of
these labels in Section 6.

As shown in Fig. 7, tracklet association can be formulated
as a min-cost network problem [44], where the edge
between a pair of nodes represents a tracklet, and the black
directed edges represent possible links to match two track-
lets. We refer the reader to [31], [44] for the details of net-
work-flow formulations.

Given a set of tracklets t1; t2; . . . ; tN where ti ¼ fxtiðti0Þ;
. . . ; xtiðtieÞg and xðtÞ is a position at t, the tracklet association
problem can be stated as that of finding an unknown num-
ber M of associations T1; T2; . . . ; TM , where each Ti contains
one or more indices of tracklets. For example, one associa-
tion may consist of tracklets 1 and 3: T1 ¼ f1; 3g. To accom-
plish this, we find a set of possible paths between two non-
overlapping tracklets ti and tj. These correspond to match
hypotheses pkij ¼ fxpk

ij
ðtie þ 1Þ; . . . ; xpk

ij
ðtj0 � 1Þg where the

time stamps are in the temporal gap between ti and tj. The
association Ti can be redefined by augmenting the associ-
ated pair of tracklets ti and tj with the match hypothesis pij.
For example, T1 ¼ f1; 3; 1-2-3g indicates that tracklets 1 and
3 form one track and the second match hypothesis (the solid
edge between t1 and t3 in Fig. 7) connects them. Given

Fig. 6. Example of learned RSTV regions. (a) & (b) illustrate a set of
RSTV regions learned automatically by a single tree. Each colour indi-
cates different pose of neighbouring individuals (up—red, down—blue
and right—green). Each RSTV is oriented such that the anchor is facing
in the upward z direction. Hence (a) indicates that while waiting, an
anchor is surrounded on the left and right by people facing the same
direction. RSTV in (b) illustrates that during talking the anchor and neigh-
bour face each other and are in very close proximity. Note that each
RSTV needs only capture some coherent portion of evidence since there
exist many trees in the RF. x and z have units of meters while time is
measured in frames.

Fig. 7. The tracklet association problem is formulated as a min-cost flow network [31], [44]. The network graph is composed of two components:
tracklets t and path proposals p. In addition to these two, we incorporate interaction potential to add robustness in tracklet association. In this exam-
ple, the interaction “standing-in-a-row” helps reinforce the association between tracklets t1 and t3 (or t2 and t5) and penalizes the association
between t1 and t4 (or t1 and t5).
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human detections, we can generate match hypotheses using
the K-shortest path algorithm [43] (see Sections 4.2 and 5.1
for details).

Each match hypothesis has an associated cost value ckij
that represents the validity of the match. This cost is derived
from detection responses, motion cues, and color similarity.
By limiting the number of hypotheses to a relatively small
value of K, we prune out a majority of the exponentially
many hypotheses that could be generated by raw detec-
tions. If we define the cost of entering and exiting a tracklet
as cen and cex respectively, the tracklet association problem
can be written as:

f̂ ¼ argmin
f

cT f

¼ argmin
f

X

i

cenfen;i þ
X

i

cexfi;ex þ
X

i;j

X

k

ckijf
k
ij

s:t:fen;i; fi;ex; f
k
ij 2 f0; 1g;

fen;i þ
X

j

X

k

fkji ¼ fi;ex þ
X

j

X

k

fkij ¼ 1;

(7)

where f represent the flow variables, the first set of con-
straints is a set of binary constraints and the second one cap-
tures the inflow-outflow constraints (we assume all the
tracklets are true). Later in this paper, we will refer to SS as
the feasible set for f that satisfies the above constraints.
Once the flow variable f is specified, it is trivial to obtain
the tracklet association T through a mapping function T ðfÞ.
The above problem can be efficiently solved by binary inte-
ger programming, since it involves only a few variables,
proportional to the number of tracklets N that is typically a
few hundred, and there are 2N equality constraints. Note
that the number of nodes in [31], [44] is usually in the order
of tens or hundreds of thousands.

One of the novelties of our framework lies in the contex-
tual information that comes from the interaction activity
nodes. For the moment, assume that the interactions It12

between A1 and A2 are known. Then, selecting a match
hypothesis fkij should be related with the likelihood of
observing the interaction It12. For instance, the red and blue
targets in Fig. 7 are engaged in the standing-in-a-row interac-
tion activity. If we select the match hypothesis that links red
with pink and blue with sky-blue (shown with solid edges),
then the interaction will be compatible with the links, since
the distance between red and blue is similar to that between
pink/sky-blue. However, if we select the match hypothesis
that links red with green, this will be less compatible with the
standing-in-a-row interaction activity, because the green/pink
distance is less than the red/blue distance, and people do not
tend to move toward each other when they are in a queue.
The potential CðI; A; T Þ (Section 3.2) is used to enforce this
consistency between interactions and tracklet associations.

5.1 Hypothesis Generations

For any pair of tracklets ti; tj that are not co-present at the
same time-stamp (thus can be linked), we generate K path
hypotheses to associate the two tracklets into a unique track.
Such hypotheses are obtained by finding K-shortest paths
between the two tracklets in a detection graph (Fig. 8). The
graph is built by connecting the residual detections between
the two tracklets.

To illustrate, consider the example shown in Fig. 8.
Beginning from the last frame (shown as t� 1) of preceding
tracklet ti, we find the residual detections at t that have suf-
ficient amount of overlap with the bounding box of ti at
t� 1. We add these detections as a pair of nodes (shown as
square nodes in Fig. 8) and a cost edge (link the two nodes)
into the graph. These nodes are linked to the previous
frame’s tracklet by a directed edge. Subsequently, we add
detections in time stamp tþ 1, by calculating the overlap
between the added detection in time t and all residual
detections in time tþ 1. We add detection nodes in all time
stamps between ti and tj iteratively and finish the graph
building process by considering the connectivity between tj
and detections at tþ 2. The detections in tþ 2 that do not
overlap sufficiently with the bounding box of tj at the first
frame are discarded.

As noted in the graph, there is an exponentially large
(and redundant) number of possible paths that link the two
tracklets, which require extensive amount of computation.
If we consider to take the interaction potential into account
for tracklet association, it is required to compute an interac-
tion feature for each possible path of targets. This can result
into an infeasible amount of computation in target associa-
tion. To avoid this issue, we use the K-shortest paths search
method [43] that generates a concise set of path hypotheses
to link the two tracklets (Fig. 8). In practice, we consider the
detection confidence to obtain the cost for simplicity. One
can add more cost features such as color similarity, motion
smoothness, if desired. To avoid having no proposals when
there are missing detections, we add one default hypothesis
that links two tracklets in a shortest distance.

5.2 Match Features

Each path pkij is associated to a cost value ckij that measures
the likelihood that the two tracklets ti; tj belong to the same
target. We model this cost value as a linear weighted sum of
multiple match features: color difference, height difference,
motion difference and accumulated detection confidences
of the path. In details,

ckij ¼ wTmdkðti; tjÞ; (8)

where wm is a model weight and dkðti; tjÞ is a vector that
collects all the features. Each of the features is obtained as
follows: i) color difference is obtained by the Bhattacharyya
distance between color histograms of ti and tj, ii) height dif-
ference is encoded by computing the difference between

Fig. 8. Illustration of path hypothesis generation given detection resid-
uals. Left: the graph is composed of detections in the temporal gap
between ti and tj. Each detection is represent as a pair of square nodes
that are linked by a detection response edge. The cost d associated with
the edge encodes the detection confidence value. The detections in time
tþ 1 that has enough overlap with the detections in time t are added to
the graph. Right: given the detection residual graph above, we can
obtain a concise set of path proposals using K-shortest path search
method. Note that there can be exponential number of possible path in
the first graph.
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average height of ti and tj, iii) motion difference is com-
puted by absolute difference in the velocity of ti and tj, and
iv) accumulated detector confidence is calculated by sum-
ming up the detection confidence in the path pkij.

Given the match features, we obtain the cost of each path
proposal by Eq. (8). In the case of target initiation and termi-
nation, we use the cost value cen; cex to model the cost of ini-
tiating and terminating a target.

6 UNIFYING ACTIVITY CLASSIFICATION AND

TRACKLET ASSOCIATION

The previous two sections present collective activity classifi-
cation and multi-target tracking as independent problems.
In this section, we show how they can be modelled in a uni-
fied framework. Let ŷ denote the desired solution of our
unified problem. The optimization can be written as:

ŷ ¼ argmax
f;C;I;A

CðC; I;A;O; T ðfÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sec:3

� cT f|{z}
Sec:5

; s:t: f 2 SS; (9)

where f is the binary flow variables, SS is the feasible set of
f , and C; I;A are activity variables. As noted in the previous
section, the interaction potential CðA; I; T Þ involves the var-
iables related to both activity classification (A, I) and track-
let association (T ). Thus, changing the configuration of
interaction and atomic variables affects not only the energy
of the classification problem, but also the energy of the asso-
ciation problem. In other words, our model is capable of
propagating the information obtained from collective activ-
ity classification to target association and from target associ-
ation to collective activity classification through CðA; I; T Þ.

6.1 Inference

Since the interaction labels I and the atomic activity labels A
guide the flow of information between target association
and activity classification, we leverage the structure of our
model to efficiently solve this complicated joint inference
problem. The optimization problem Eq. (9) is divided into
two sub problems and solved iteratively:

fĈ; Î; Âg ¼ argmax
C;I;A

CðC; I;A;O; T ðf̂ÞÞ (10)

f̂ ¼ argmin
f

cT f �CðÎ; Â; T ðfÞÞ; s:t:f 2 SS: (11)

Given f̂ (and thus T̂ ) the hierarchical classification problem
is solved by applying iterative belief propagation. Fixing
the activity labels A and I, we solve the target association

problem by applying the Branch-and-Bound algorithm with
a tight linear lower bound (see below for more details).

Iterative Belief Propagation. Due to the high order potentials
in our model (such as the collective-interaction potential),
the exact inference of the all variables is intractable. Thus, we
propose an approximate inference algorithm that takes
advantage of the structure of our model. Since each type of
variable forms a simple chain in the temporal direction (see
Fig. 1), it is possible to obtain the optimal solution given all
the other variables by using belief propagation [13]. The iter-
ative belief propagation algorithm is grounded in this intui-
tion, and is shown in detail in Algorithm 3.

Target Association Algorithm. We solve the association
problem by using the Branch-and-Bound method [22].
Unlike the original min-cost flow network problem, the
interaction terms introduce a quadratic relationship between
flow variables. Note that we need to choose at most two flow
variables to specify one interaction feature. For instance, if
there exist two different tails of tracklets at the same time
stamp, we need to specify two of the flows out of seven flows
to compute the interaction potential as shown in Fig. 7. This
leads to a non-convex binary quadratic programming prob-
lem which is hard to solve exactly (the Hessian H, that con-
tains information from interaction potentials (see Section 7),
is not a positive semi-definite matrix).

argmin
f

1

2
fTHf þ cT f; s:t: f 2 SS (12)

To tackle this issue, we use a Branch-and-Bound algorithm
with a novel tight lower bound function given by hTf �
1
2 f

THf; 8f 2 SS (Section 7).

7 TRACKLET ASSOCIATION WITH INTERACTION

POTENTIAL

The target association problem with the interaction poten-
tial can be written as:

f̂ ¼ argmin
f

cT f �CðI; A; T ðfÞÞ

s:t: fen;i; fi;ex; f
k
ij 2 f0; 1g

fen;i þ
X

j

X

k

fkji ¼ fi;ex þ
X

j

X

k

fkij ¼ 1;

ð13Þ

where the constraints are summarized as: 1) binary flow
constraints (the flow variable should be 0 or 1 integer value
specifying that a path is valid or not) and 2) inflow-outflow
constraints (the amount of flow coming into a tracklet
should be the same as the amount of flow going out of it
and the amount is either 0 or 1). The c vector is a cost vector
that measures the likelihood of linking two tracklets ckij or
the cost to initiate/terminate a target cen; cex. The second
term CðI; A; T ðfÞÞ encodes the interaction potential which
is dependent on the trajectories derived from tracklet
association.

7.1 The Non-Convex Quadratic Objective Function

Though the match cost cT f is represented as a linear func-
tion, the interaction potential involves quadratic relation-
ship between flow variables. As discussed in Section 3, the
interaction potential CðI; A; T ðfÞÞ is composed of a sum of
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interaction potentials each of which is associated to a single
interaction variable.

CðI; A; T Þ ¼
X

i;j

CðAi;Aj; Iij; T Þ; (14)

CðAi;Aj; Iij; T Þ ¼
X

t2T V

X

a2I
waai � cðAi;Aj; T ; t;4tÞ IIða; IijÞ:

ð15Þ
Since the feature function c is dependent on at most two

flow variables, the overall objective function can be repre-
sented as a quadratic function.

Let us start by introducing a few definitions. We define
the head and tail path of a tracklet ti as the path through
which the flow comes into ti and the path through which
the flow goes out from ti, respectively. The head path of ti
can be between the entering path fen;i and the path connect-
ing from any other tracklet tl, f

k
li. Similarly, the tail path of

ti can be between the exiting path fex;i and the path connect-
ing to any other tracklet tm, fkim. A tracklet ti is called intact
in a certain temporal support t 2 ðt1; t2Þ, if the trajectory of
the target is fully covered by the tracklet within the tempo-
ral support (i.e, the tracklet is not fragmentized within the
time gap). Otherwise, it is called fragmentized in a certain
temporal support t 2 ðt1; t2Þ.

In order to calculate the interaction between two tar-
gets i and j at certain time stamp t, we need to specify
the trajectory of Ai and Aj in all time stamps t 2
ðt�4t; tþ4tÞ (the temporal support of an interaction,
Section 3.3), which can involve selecting at most two
flow variables in our flow network.1 If the both tracklets
are intact within the temporal support of Itij, the interac-
tion potential does not get affected by tracklet associa-
tion (we need to specify no flow variable to compute the
interaction feature and thus it can be ignored). If only
one of the tracklets is fragmentized and the other is intact,
we need to specify only one head or tail path of the frag-
mentized tracklet. On the other hand, if the both ti and
tj are fragmentized in the temporal support, we need to
specify two flow variables to obtain the associated inter-
action feature (head or tail of ti and head or tail of tj).

Since the objective function can be specified as a sum of
quadratic and linear functions of flow variable f , the prob-
lem can be re-written as follows:

f̂ ¼ argmin
f

cT f �CðI; A; T ðfÞÞ

¼ argmin
f

cT f þ dT f þ fTHf

s:t: f 2 SS;

ð16Þ

SS represent the feasible set for f that satisfies the constraints
listed in Eq. (13), the linear part of interaction potential d can
be obtained by accumulating the interaction potentials that

involve only one selection of path (one of the two tracklets
ti; tj is intact within the temporal support), and the Hessian
H can be obtained by accumulating all interaction potentials
that involve two selections of flow variables (both of ti; tj
are fragmentized in the temporal support of the given inter-
action variable as in the example of Fig. 7). Note that H is
not positive semi-definite (thus non-convex) and standard
quadratic programming techniques are not applicable.

7.2 Branch-and-Bound

Since the objective function is non-convex, we employ a
novel Branch-and-Bound algorithm to solve the complicated
tracklet association problem. The Branch-and-Bound algo-
rithm we describe here find the global minimum of the objec-
tive function over the space SS. Starting from the initial
subproblem Q ¼ SS, we split the space into two subspaces
Q0;Q1 by setting 0 and 1 to a certain flow variable fi (ignor-
ing/selecting a path). Given each subproblem (where some
of flow variables are already set either 0 or 1), we find the
lower bound and upper bound (of optimal solution) in the
subproblem, LðQÞ andUðQÞ. If the difference betweenL and
U is smaller than a specified precision � and UðSSÞ is smaller
than the lower bound of any other subspace, we stop the iter-
ation and yield the global solution. Otherwise, the algorithm
iterate the steps of 1) selecting a subproblem, 2) splitting the
subproblem, and 3) finding the lower and upper bound in
the subproblem. This is summarized in Algorithm 4.

In following sections, we discuss about how we compute
the lower and upper bound of a subproblem Q (Section 7.3)
and which variable is to be split to provide subproblems Q0

andQ1 (Section 7.4).

7.3 Lower Bound

In this section, we discuss how we define the lower bound
of the objective function. To make it efficient to solve, we
find a linear lower bound function:

LðfÞ ¼ ðcþ dþ lÞT f � ðcþ dÞT f þ fTHf; f 2 Q: (17)

Since the whole interaction potential is represented as
a sum of interaction potentials associated with a single
interaction variable, it suffices to show that the lT f is
less than or equal to fTHf within one interaction poten-
tial (associated to a single interaction variable Ikij); that is
lT f � fTHf , if lTi f � fTHif , 8i where i denotes an index

1. Note that it can involve up to four selections of path proposals to
fully specify the trajectories of Ai and Aj: head of Ai, tail of Ai, head of Aj

and tail of Aj if the two tracklets are both fragmentized in both direc-
tions within the temporal support of an interaction. However, we
ignore such cases since i) it rarely happens, ii) it make the algorithm to
be over-complicated and iii) if the tracklets are too short there are not
reliable information we can exploit in the first place.
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that enumerates all interaction variables Ikij, Hi encodes
the contextual information from a single interaction Ikij, li
is a linear lower bound vector associated to each Hi,
l ¼

P
i li and H ¼

P
i Hi.

Thus, we decompose the Hessian H into summation of
Hi and show that there exists a linear vector li that yields a
lower bound of fTHif . The matrix Hi can be obtained by
computing the corresponding interaction potential
CðAi;Aj; I

t
ij; T ðfÞÞ given each possible configuration of path

flows, e.g., selecting the two solid paths shown in the Fig. 7.

Hiða; bÞ ¼ �
1

2
CðAi;Aj; I

t
ij; T ðfÞÞ where fa ¼ fb ¼ 1; (18)

where a; b denote the indices of a flow variable (paths).
To obtain the lower bound of fTHif , we take advantage of

two properties: i) the variables are binary and ii) there must
be one and only one inflow and outflow for each tracklet ti.
These two facts can be easily derived from the basic con-
straints of the problem (SS). Given these, we notice that any
two elements in Hi are always selected with symmetry
(shown as red box in Fig. 9) and the values are added to pro-
duce fTHif ¼ Hiða; bÞ þHiðb; aÞ where a and b are the indi-
ces of the selected variables in f . Thus, it is easy to show that,

min
k
Hiða; kÞ þmin

k
Hiðb; kÞ � Hiða; bÞ þHiðb; aÞ: (19)

From this, we obtain the lower bound vector li for Hi as

liðaÞ ¼ min
k
Hiða; kÞ (20)

(see Fig. 9). The overall lower bound function l is obtained
by summing up all lower bounds associated to each interac-
tion variable: l ¼

P
i li.

Given the lower bound function l, the lower bound of Q
is obtained by applying binary integer programming on the
lower bound with the given constraints of Q, that is
f ¼ argminfðcþ cI þ lÞT f; s:t: f 2 Q. The upper bound is

set to be infinite if there is no feasible solution, or set to be
the value of original objective function if the solution f we
obtained is feasible.

7.4 Split Variable Selection

Though the presented lower bound can generate a rather
tight lower bound in our problem, not all the flow variables
in f have the same “tightness”. Splitting on certain a flow
variable fa (setting it to one or zero) will give a higher
uncertainty (larger gap between the lower bound and actual
objective function) than splitting on others. To efficiently
split the space and find the solution, we follow a strategy
where the flow variable that is associated to the largest
degree of ambiguity(gap) is selected in each iteration of the
branch and bound procedure. In details, in order to measure
the degree of ambiguity, we derive upper bound vector ui
from Hi by

uiðaÞ ¼ max
k
Hiða; kÞ: (21)

Notice that we take the maximum of a given row in contrast
to the minimum in lower bound case (Eq. (20)). Similar to
the lower bound vector case, we can obtain full upper
bound vector u by accumulating over different interaction
variables. It is trivial to show that:

lT f � fTHf � uTf: (22)

Low degree of ambiguity takes place when the value of
lðaÞ is close to uðaÞ and high degree of ambiguity takes place
when the gap between lðaÞ and uðaÞ is large. Therefore, we
choose the variable to be split by finding the variable that
has largest difference, argmaxauðaÞ � lðaÞ.

8 MODEL LEARNING

Given the training videos, the model is learned in a two-
stage process: i) learning the observation potentials
CðA;OÞ and CðC;OÞ. This is done by learning each
observation potential Cð�Þ independently using multi-
class SVM [40]. ii) learning the model weights w for the
full model in a max-margin framework as follows. Given
a set of N training videos ðxn; ynÞ, n ¼ 1; . . . ; N , where xn

is the observations from each video and yn is a set of
labels, we train the global weight w in a max-margin
framework. Specifically, we employ the cutting plane
training algorithm described in [17] to solve this optimi-
zation problem. We incorporate the inference algorithm
described in Section 6.1 to obtain the most violated con-
straint in each iteration [17]. To improve computational
efficiency, we train the model weights related to activity
potentials first, and then train the model weights related
to tracklet association using the learned activity models.
Since there exists different number of variables A, I and
C in the training set, we balance the loss by using differ-
ent values 1, 10, and 100 for A, I and C, respectively.
Also, the observation potentials CðA;OÞ and CðC;OÞ are
reweighted to be within ½�1; 1�.

8.1 Model Analysis

We visualize a subset of model weights learned using our
training algorithm in Fig. 10. The figure demonstrates that

Fig. 9. Illustration of lower bound L computation for the interaction vari-
able corresponding to Fig. 7. Each element of the HessianHi is obtained
by computing the corresponding interaction potential CðAi;Aj; I

t
ij; T Þ

given the flow configuration. A linear lower bound lT f is derived from
fTHf by taking the minimum of each row in the hessian H matrix. Note
that only one configuration can be selected in the matrix H with symme-
try since no two flow coming out from one tracklet ti or tj can be set
simultaneously. The example shows the case when solid edges in Fig. 7
are selected.
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our algorithm can capture meaningful relationships
between variables at different levels in the hierarchy.

9 EXPERIMENTAL VALIDATION

Implementation Details. Our algorithm assumes that the
inputs O are available. These inputs are composed of col-
lective activity features, tracklets, appearance feature, and
spatio-temporal features as discussed in Section 3.1. Given
a video, we obtain tracklets using a tracking method such
as [5]. Once tracklets O are obtained, we compute two
visual features (the histogram of oriented gradients (HoG)
decriptors [10] and the bag of video words histogram
[11]) in order to classify poses and actions, respectively.
The HoG is extracted from an image region within the
bounding box of the tracklets and the BoV is constructed
by computing the histogram of video-words within the
spatio-temporal volume of each tracklet. To obtain the
video-words, we apply PCA (with 200 dimensions) and
the k-means algorithm (100 codewords) on the cuboids
obtained by [11]. Finally, the collective activity features
are computed using the STL descriptor as discussed in
Section 4 computed over tracklets and pose classification
estimates. We construct our STL descriptor with following
parameters: 8 meters for maximum radius and 60 frames

for the temporal support. Since we are interested in label-
ling one collective activity per one time slice (i.e., a set of
adjacent time frames), we take the average of all collected
STL in the same time slice to generate an observation for
C. In addition, we append the mean of the HoG descrip-
tors obtained from all people in the scene to encode the
shape of people in a certain activity. Instead of directly
using raw features from HoG, BoV, and STL, we train
multiclass SVM classifiers [17] for each of the observations
to keep the size of parameters within a reasonable bound.
In the end, each of the observation features is represented
as a jPj, jAj, and jCj dimensional features, where each
dimension of the features is the classification score given
by the SVM classifier. In the experiments, we use the SVM
response for C as a baseline method (Table 1 and Fig. 11).

Given tracklets and associated pose/action features O, a
temporal sequence of atomic activity variables Ai is
assigned to each tracklet ti. For each pair of coexisting Ai

and Aj, Iij describes the interaction between the two. Since
I is defined over a certain temporal support (4tI), we sub-
sample every 10th frames to assign an interaction variable.
Finally, one C variable is assigned in every 20 frames with a
temporal support 4tC . We present experimental results
using different choices of 4tI and 4tC , (Table 2). Given
tracklets and observations (O and OC), the classification and

TABLE 1
Comparison of Collective and Interaction Activity Classification for Different Versions of Our Model Using the Data Set [7]

(Left Column) and the Newly Proposed Dataset (Right Column)

The models we compare here are: i) Graph withoutOC . We remove observations provided by the STL descriptor (Section 4) for the collective activity.
ii) Graph with no edges between C and I. We cut the connections between variables C and I and produce separate chain structures for each set of
variables. iii) Graph with no temporal edges. We cut all the temporal edges between variables in the graphical structure and leave only hierarchical
relationships. iv) Graph with no temporal chain between C variables. v) Our full model shown in Fig. 1d and vi) baseline method. The baseline method
is obtained by taking the max response from the collective activity observation (OC).

Fig. 10. Examples of learned weights using the proposed method. Lighter values indicate larger weights. Left Learned weights for CðC; IÞ, with inter-
actions on the x-axis and collective activities on the y-axis (see Section 9 for interaction and activity labels). As an example, note that the interaction
“facing each other’ has a very larger weight associated with “talking” (T) and a low weight associated with “walking.” This agrees with our intuition
that people are very likely to be facing each other when they are conversing, but will probably face the same direction when they are walking together.
Middle Learned weights for cpðA;A; IÞ, with the interaction “facing each other.” The axes indicate the direction each person is facing. The highest
weights are centered around the region corresponding to having two people in front of the other (0 degree in the person’s view point). Right Learned
weights for cpðA;A; IÞ, with the interaction “standing in a queue.” The highest weights correspond to people facing the same direction. Middle and
Right demonstrate that our system has successfully learned that when people are facing each other they are most likely facing opposite directions,
and when they are standing in a queue they will face the same direction.
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target association take about a minute per video in our
experiments.

Data Sets and Experimental Setup We present experimental
results on the public data set [7] and a newly proposed data
set. The first data set is composed of 44 video clips with
annotations for five collective activities (crossing, waiting,
queuing, walking, and talking) and eight poses (right, right-
front, . . ., right-back). In addition to these labels, we annotate
the target correspondence, action labels and interaction
labels for all sequences. We define the eight types of interac-
tions as approaching, leaving (LV), passing-by (PB), facing-
each-other, walking-side-by-side (WS), standing-in-a-row, stand-
ing-side-by-side and no-interaction (NA). The categories of
atomic actions are defined as: standing and walking. Due to a
lack of standard experimental protocol on this data set, we
adopt two experimental scenarios. First, we divide the
whole set into four subsets without overlap of videos and
perform four-fold training and testing. Second, we divide
the set into separate training and testing sets as suggested
by [21]. Since the first scenario provides more data to be
analysed, we run the main analysis with the first scenario
and use the second for comparison against [21]. In the
experiments, we use the tracklets provided on the website
of the authors of [5], [7].

The second data set is composed of 32 video clips with
six collective activities: gathering, talking, dismissal, walking
together, chasing, queueing. For this data set, we define nine
interaction labels: approaching , walking-in-opposite-direction,
facing-each-other, standing-in-a-row, walking-side-by-side, walk-
ing-one-after-the-other (WR), running-side-by-side (RS), runn
ing-one-after-the-other (RR), and no-interaction. The atomic
actions are labelled as walking, standing still, and running.
We define eight poses similarly to the first data set. We
divide the whole set into three subsets and run three-fold

training and testing. For this data set, we obtain the tracklets
using [31] and create back projected 3D trajectories using
the simplified camera model [15].

Results and Analysis. We analyze the behavior of the
proposed model by disabling the connectivity between
various variables of the graphical structure (see Table 1
and Fig. 11 for details). We study the classification accu-
racy of collective activities C and interaction activities I.
As seen in the Table 1, the best classification results are
obtained by our full model. Since the data set is unbal-
anced, we present both overall accuracy and mean-per-
class accuracy, denoted as Ovral and Mean in Tables 1
and 2, respectively. We observe that our full model also
obtains better or similar accuracy in atomic pose and
action classification. Our full model achieves 45:3=39:2
percent in pose classification (overall/mean) and
89:4=87:9 percent in action classification using data set [7]
while the baseline individual pose and action classifier
achieves 42:6=38:8 and 89:8=89:1 percent, respectively.

Next, we analyse the model by varying the parameter
values that define the temporal supports of collective and
interaction activities (4tC and 4tI). We run different
experiments by fixing one of the temporal supports to a ref-
erence value and change the other. As any of the temporal
supports becomes larger, the collective and interaction
activity variables are connected with a larger number of
interactions and atomic activity variables, respectively,
which provides richer coupling between variables across
labels of the hierarchy and, in turn, enables more robust
classification results (Table 2). Notice that, however, by
increasing connectivity, the graphical structure becomes
more complex and thus inference becomes less manageable.

Since previous works adopt different ways of calculating
the accuracy of the collective activity classification, a direct

TABLE 2
Comparison of Classification Results Using Different Lengths of Temporal Support4tC and4tI

for Collective and Interaction Activities, Respectively

Notice that in general larger support provides more stable results.

Fig. 11. (a) and (b) show the confusion table for collective activity using baseline method (SVM response for C) and proposed method on data set [7],
respectively. (c) and (d) compare the two methods on newly proposed data set. In both cases, our full model improves the accuracy significantly over
the baseline method. The numbers on top of each table show mean-per-class and overall accuracies.
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comparison of the results may not be appropriate. Choi et al.
[7] and Choi et al. [8] adopt a leave-one-video-out training/
testing scheme and evaluate per-person collective activity
classification. Lan et al. [21] train the model on three
fourths of the data set, test on the remaining fourth and eval-
uate per-scene collective activity classification. To compare
against the baseline collective activity classifiers discussed in
Section 4 and introduced in [7], [8], we assign the per-scene
collective activity labels that we obtain with four-fold experi-
ments to each individual. We obtain an accuracy of 74:4 per-
cent which is superior than 65:9 and 70:9 percent obtained by
STL and RSTV classifier respectively (Section 4). These
results were also reported in [7] and [8]. In addition, we run
the experiments on the same training/testing split of the
data set suggested by [21] and achieve competitive accuracy
(80:4 overall and 75:7 percent mean-per-class compared to
79:1 overall and 77:5 percent mean-per-class, respectively,
reported in [21]). Anecdotal results are shown in Fig. 12.

Table 3 summarizes the tracklet association accuracy of
our method. In this experiment, we test three different algo-
rithms for tracklet matching: pure match, linear model, and

full quadratic model. Match represents the max-flow
method without interaction potential (only appearance,
motion and detection scores are used). Linear model repre-
sents our model where the quadratic relationship is ignored
and only the linear part of the interaction potentials is con-
sidered (e.g., those interactions that are involved in select-
ing only one path). The Quadratic model represents our full
Branch-and-Bound method for target association. The esti-
mated activity labels are assigned to each variable for the
two methods. We also show the accuracy of association
when ground truth (GT) activity labels are provided, in the
fourth and fifth columns of the table. The last column shows
the number of association errors in the initial input track-
lets. In these experiments, we adopt the same four fold
training/testing and three fold training/testing for the data
set [7] and newly proposed data set, respectively. Note that,
in the data set [7], there exist 1,821 tracklets with 1,556
match errors in total. In the new data set, which includes
much less crowded sequences than [7], there exist 474 track-
lets with 604 errors in total. As the Table 3 shows, we
achieve significant improvement over baseline method

Fig. 12. Anecdotal results on different types of collective activities. In each image, we show the collective activity estimated by our method. Interac-
tions between people are denoted by the dotted line that connects each pair of people. To make the visualization more clear, we only show interac-
tions that are not labelled as NA. Anecdotal results on the data set [7] and the newly proposed data set are shown on the top and bottom rows,
respectively. Our method automatically discovers the interactions occurring within each collective activity; eg., walking-side-by-side occurs with
crossing or walking, whereas standing-side-by-side occurs with waiting. See text for the definition of other acronyms.

TABLE 3
Quantitative Tracking Results and Comparison with Baseline Methods (See Text for Definitions)

Each cell of the table shows the number of match errors and match error correction rate (MECR) # error in tracklet � # error in result
# error in tracklet of each method,

respectively. Since we focus on correctly associating each tracklet with another, we evaluate the method by counting the number of errors made dur-
ing association (rather than detection-based accuracy measurements such as recall, FPPI, etc) and MECR. An asssociation error is defined for each
possible match of a tracklet (thus at most two per tracklets, previous and next match). This measure can effectively capture the amount of fragmenti-
zation and identity switches in association. In the case of a false alarm tracklet, any association with this track is considered to be an error.

Fig. 13. The discovered interaction standing-side-by-side helps to keep the identity of tracked individuals after an occlusion. Notice the complexity of
the association problem in this example. Due to the proximity of the targets and similarity in color, the Match method (b) fails to keep the identity of
targets. However, our method (a) finds the correct match despite the challenges. The input tracklets are shown as a solid box and associated paths
are shown in dotted box.
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(Match) using the data set [7] as it is more challenging and
involves a large number of people (more information from
interactions). On the other hand, we observe a smaller
improvement in matching targets in the second data set,
since it involves few people (typically 2 	 3) and is less
challenging (note that the baseline (Match) already achieves
81 percent correct match). Experimental results obtained
with ground truth activity labels (Linear GT and Quad. GT)
suggest that better activity recognition would yield more
accurate tracklet association. Anecdotal results are shown
in Fig. 13. When the interactions are less structured (e.g.,
passing by or leaving), we observe that mistakes in recog-
nizing interactions often produce more errors in the tracklet
association.

The training procedure takes 24 hours to learn all the
model parameters and the testing algorithm takes typically
several minutes to process a video excluding the feature
extraction and tracklet generation process.

10 CONCLUSION

In this paper, we have presented a new framework to coher-
ently identify target associations and classify collective
activities as well as the novel concept, crowd context, that
encodes the essential contextual information for collective
activity recognition. We have demonstrated that collective
activities provide critical contextual cues for making target
association more robust and stable; in turn, the estimated
trajectories as well as atomic activity labels allow the con-
struction of more accurate interaction and collective activity
models. As a future work, we aim to introduce a no activity
class to separate interesting activities from not interesting
activities in real world videos. Also, introducing latent
interaction variables in the training procedure would make
the system more scalable to a large number of collective
activities and avoid biases in assigning interaction labels.
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